Primena TCP/IP u namenskim
sistemima

Mikrokontrolerii TCP-1IP

MICRO, MICRO, BPC, PC;

Ethernet or other multi drop protocols

As Ethemet cards have become standard on PC’s their price has fallen
dramatically. The availability of Ethernet chips that are easily interfaced to both 8
and 16 bit micros. at less than $10 each. along with the ease and familiarity of
using networked PC’s will make this an increasingly popular communication
media for industrial systems.

It is also clear that the software components required to control an Ethernet
network could be easily adapted to operate multi station Transport Layers such as
RS485. CAN and other proprietary multi drop links by the provision of
appropriate hardware drivers.

Ethernet

LAN/GPIB gateway

To corporate
intranet

e

=

Instrument 1 Instrument 2

To corporate
intranet

Switch

| |
Instrument 1 Instrument 2

AVCC_3V3 VCC 3V VCC 3V3 VCC 3v3
n 2 13
6 cs cs c3 (=] c1
100nF |100nF]100nF | 1000F lmmr 100nF I_ [—
L =
Veg 3v3 = VCC 3v3 V3 Ve 33 GND
GND)
RS R3 R2 R1 J:
%2 10R o5k Llaoor =
0+ o
g | e
4
& ACTLED
2| =2
220F
=l B -
] T RD- = b2
. s GND GND
(=24
RD+ RD- n_cm | 8 48LQFP
6.80F
]
10-/1 T,
Py o ANRDE 9 = 12,
(=1 6.8nF GND
= D+ R6 [R7
49.9% Ll49.9R
RI%5
LINKLED /J\ RCT
o3l Cl6
™ TonF fs = ==
g o 10nF
Ve 3v3 = = = =
GND GhO QD GND
VCC3V3 AVCC_3V3
£P1 =ci9
4.70F
FERRITE _|c20 c21
|4JuF 1000F =
= Gio

INTn

GND GND \

15
18pF
o Ve Gfo
R11
262
L LDl
GND

JIPYTT VPEDAI

TCP/P

Drivers and Stacks

The need for something more complex than a conventional driver arises from the
nature of communications networks - multiple interactions is going on at the
same time.

Stack 1s extension of a device driver concept

A Stack 1s a set of co-operating programs written to work together in many
different combinations (~inheritance).

Stack underlying structure 1s provided by a commonly agreed set

of protocols (or message standards)

Each level of the stack hiding the messy detail of the level below as we become
more and more application oriented.

ERTIFIE

Your ~ Your
Application Application Application

S
n
@
&
o
x

POSIX POSIX

TI
Drivers

HAL HAL

MSP432 ' CC3220 CC2640R2F

Tl

Drivers 1
RTOS

Drivers 1
RTOS

IVH oS 318

Layers

The TCP/IP stack 1s broken down into layers as shown in

the table

Layer Examples Function
Client Application DHCP, FTP, WEB, Do Something Useful
YOUR APP
Transport TCP, UDP Send a Message
Internet IP, PING, ARP Component parts, Connect,
Data, handshake
Link PPP, SLIP Customize for & talks to
specific hardware
Physical RS232, Ethernet The hardware chip

voltage, frequency, signaling
techniques

Sockets **

* A socket 1s a communications end-point

« If you need to establish a connection with the other program, you need the
socket address of the application that you want to connect to.

* Once a connection has been established to a socket in the addressee the
applications programmer need only consider the data to be read/written.

s Two types of (TCP/IP) sockets
a Stream sockets (e.g. uses TCP)

s provide reliable byte-stream service
a Datagram sockets (e.g. uses UDP)

= provide best-effort datagram service
= messages up to 65.500 bytes

Sockets

TCP sockets

sebene 65535

AL R LR

Blocking and Non-Blocking Sockets

* A blocking socket: the program 1s "blocked" until the request for data has been
satisfied. When the remote system does write some data on the socket, the read
operation will complete and execution of the program will resume.

A non-blocking socket requires that the application recognize the error
condition and handles the situation appropriately.

* The default behavior for socket functions 1s to "block" and not return until the
operation has completed

Client-Server Applications

Programs written to use TCP are developed using the Client-Server model.

*The Client application initiates what is called an active open. It creates a socket
and actively attempts to connect to a Server program.

*The Server application creates a socket and passively listens for incoming
connections from Clients, performing what is called a passive open.

*When the Client initiates a connection, the Server is notified that some process is
attempting to connect with it.

*By accepting the connection, the Server completes what 1s called a virtual circuit,
a logical communications pathway between the two programs.

= Server
o passively waits for and responds to clients
0 passive socket

s Client
0 initiates the communication

o must know the address and the port of the server
o active socket

The Server side

*Create a socket.

eListen for incoming
connections from Clients.
*Accept the Client connection.
*Send and receive information.
*Close the socket when the
Client has finished or when the
Server wishes to no longer be
available.

The Client side:

*Create a socket.

*Specity the address and
service port of the Server
program.

*Establish the connection with
the Server.

*Send and receive information.
*Close the socket when
finished, terminating the
conversation.

Sockets - Procedures

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

Using the socket interface

socket = mn open(dest ip, src port, dest port,
client, TCP, recv buff, buff len);

status = mn send(socket, msg ptr, msg len);
status = mn recv(socket, buff ptr, buff len);
status = mn close (socket);

Multithreading

» Multithreading extends the idea of multitasking into applications, so you
can subdivide specific operations within a single application into
individual threads.

» Each of the threads can run in parallel.

*The OS divides processing time not only among different applications,
but also among each thread within an application.

* Posix - pthreads

Thread Synchronization Mechanisms

« Mutual exclusion (mutex):

e guard against multiple threads modifying the same
shared data simultaneously

 provides locking/unlocking critical code sections
where shared data is modified

« each thread waits for the mutex to be unlocked (by
the thread who locked it) before performing the code
section

Basic Mutex Functions

int pthread_mutex_init(pthread _mutex_t *mutex, const
pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread _mutex_t *mutex);
int pthread _mutex_unlock(pthread mutex_t *mutex);

int pthread _mutex_destroy(pthread mutex_t *mutex);

Select Start,
Control Panel,

Programs and Features (or Programs)

*Select Turn Windows Features on or off

*Check the box for both Telnet Client and Telnet Server

*Select OK
*Verify that you can now Telnet the port

* ipconfig/all,
s tlenet <Ipaddress> <17|13|...>

-

E‘{ Windows Features

E=REERT)

OO

+
I MEEEEEORE WO M E

Turn Windows features on or off

To turn a feature on, select its check box. To turn a feature off, clear its
check box. A filled box means that only part of the feature is turned on.

J Internet Information Services

J Internet Information Services Hostable Web Core
; Media Features

; Microsoft \MET Framework 3.5.1

| Microsoft Message Queue (MSMQ)) Server

J Print and Document Services

, Rernote Differential Compression

, RIP Listener

J Simple Metwork Management Protocol (SMMP)

J Simple TCPIP services (i.e. echo, daytime etc)

, Tablet PC Components

 Telnet Client

| Telnet Server

; TFTP Client

P | P T

[ﬁ]

m

0K] I Cancel

