ODSEK ZA ELEKTRONIKU ISPIT IZ RAČUNARSKE SIMULACIJE ELEKTRIČNIH KOLA, JANUAR 2005. ISPIT TRAJE 60 MINUTA

IME	I PRE	ZIME
-----	-------	------

BR. IND.

1	2	3	4	5	6	7	8	Σ

1. Na slici su prikazane sve vrste analiza koje se mogu zadati u programskom paketu ORCAD 9.2/PSPICE . Ukratko objasniti funkcije pojedinih analiza.

V3 PartName: vsin 🛛 🔀			
Name	Value		
DC =		Save Attr	
AC= VOEE=	~	Change Display	
VAMPL=		Delete	
TD=0			
DF=0 PHASE=0	×		
Include Non-changeable Attributes OK			
Include System-defin	ed Attributes	Cancel	
☐ Include Non-changea ☐ Include System-defin	able Attributes ed Attributes	OK Cancel	

2. Na slici je prikazano polje u kome se zadaju parametri jednom naponskom sinusoidalnom generatoru. Ukratko objasniti značenje pojedinih parametara. Koje polje treba popuniti da bi se ovaj generator mogao iskoristiti za analizu frekvencijskih karakteristika? Koja vrednost treba da stoji u tom polju? **3.** Na slici je prikazan vremenski oblik napona koga treba generisati korišćenjem naponskog generatora **VPWL**. Dodeliti vrednost parametrima koji definišu ovaj vremenski oblik.

4. Za dobijanje familije krivih $I_D = f(V_{DS})|_{V_{GS}=const}$, $0 \le V_{DS} \le 3V$, $0.6V \le V_{GS} \le 1.6V$ u PSPICE-u se koristi DC analiza. Korak promene napona V_{DS} je 1mV, a napona V_{GS} je 0.1V. Na slici su prikazana polja u koje treba upisati vrednost parametara za zadavanje ove analize. Takođe je potrebno i selektovati neka polja za ispravno zadavanje analize.

DC Sweep		X
Swept Var. Type		
Voltage Source	Name:	
C Temperature		
Current Source		
Model Parameter	Model Name:	
Global Parameter	Param, Name:	
Sweep Type C Linear C Octave C Decade C Value List	Start Value: End Value: Increment: Values;	
Nested Sweep	ОК	Cancel

DC Nested Sweep	X	
Swept Var. Type	Name:	
 Voltage Source Temperature 	,	
Current Source	Model Type:	
Model Parameter	Model Name:	
Global Parameter	Param. Name:	
– Sweep Type –		
C Linear	Start Value:	
 Octave 	End Value:	
C Decade	Pts/Octave:	
C Value List	Values:	
Main Sweep 🔽 Enable Nested Sweep		
OK Cancel		

5. Na slici je prikazano kolo za snimanje zavisnosti statičke karakteristike diode u funkciji temperature. Kojom analizom je dobijena ova karakteristika (zaokružiti tačan odgovor)

a) DC Sweep

b) DC Sweep+Nested Sweep

c) Parametric

d) Transient

Transient	×	
- Transient Analysis		
Print Step:	Ons	
Final Time:	1000ns	
No-Print Delay:		
Step Ceiling:		
🖵 Detailed Bias Pt.		
Skip initial transient solut	ion	
- Fourier Analysis		
📃 Enable Fourier		
Center Frequency:		
Number of harmonics:		
Output Vars.:		
OK	Cancel	

6. Ukratko objasniti parametre pri zadavanju **Transient** analize. Koja je Funkcija Fourierove analize?

7. U Stimulus editoru su zadati vremenski oblici signala takta (DSTM1 i DSTM2) i dovedeni na ulaz

kola kao na slici. Nacrtati vremenski oblik napona V(OUT).

8. Na slici je prikazano kolo pojačavača u kome su upotrebljeni otpornici sa tolerancijom 1%. Za ovaj pojačavač se želi odrediti maksimalno i minimalno pojačanje na učestanosti f = 1 kHz. Šta je potrebno podesiti u šemi pojačavača da bi Worst Case analiza imala smisla?

Popuniti polja na slici tako da može da se dobije maksimalno pojačanje pojačavača? Koju je još analizu potrebno pokrenuti da bi se mogao dobiti podatak o maksimalnom pojačanju pojačavača? Gde se nalazi rezultat ove simulacije?

