
Pose estimation 
& 

camera movement tracking
Mašinska vizija, 2018.

Marija Janković



Back to camera calibration

• OpenCV calib3d module

• cv::calibrateCamera()

• In this routine, the method of calibration is to target the camera on a 
known structure that has many individual and identifiable points. By 
viewing this structure from a variety of angles, we can then compute 
the (relative) location and orientation of the camera at the time of 
each image as well as the intrinsic parameters of the camera

• To provide multiple views, we rotate and translate the object





cv::calibrateCamera()

• The algorithm performs the following steps:
• Initialization

• intrinsics (eye matrix or available as inputs)

• distortion coeffs (zeros or available as inputs)

• Estimate initial camera pose (extrinsics) using cv::solvePnP()

• Run optimization algorithm to minimize the reprojection error, that is, the 
total sum of squared distances between the observed feature points (from 
the image) and the projected (using the current estimates for camera 
parameters and the poses) referent 3D object points.

• The function returns the final re-projection error.



We calibrated the camera, how will we use 
the results?
• With calibrated camera we have acquired important parameters:

• intrinsics – focal length f and point of lens center on the imager (cx, cy)

• extrinsics – rotation matrix R and translation matrix T

• distortion coefficients – r1, r2, r3, p1, p2

• Perform camera calibration once again!!!
• open camera_calibration_with_debug.cpp and set the path for in_VID5.xml 

and run it





Camera spec

• The C270 Logitech web camera has a sensor with pixels size of 2.8um, 
and a resolution of 1280x720, 
so the sensor size is 3.58 mm x 2.02 mm

• http://support.logitech.com/en_us/article/17556

http://support.logitech.com/en_us/article/17556


Extrinsics vs rotation matrix vs rvec &tvec

• camera calibration function provides two 3element vectors rvec and 
tvec

• we expected a 4x4 extrinsic matrix with rotation matrix R 3x3, and 
translation vector T 3x1

• T is the same as tvec, but R is not the same as rvec

• What is the catch?



Rodrigues

• Defining the three angles of rotation does not uniquely define the rotation 
since the order of rotations changes the final result.

• Thus the rotation matrix R is not intuitive and it is complicated to 
understand which rotations will be applied

• Rodriques define a new way of defining a 3D rotation using rotation vector 
r 
• r is a vector around which the system should be rotated for a single angle to achieve 

the wanted rotation
• angle theta is defined through the norm of the r vector 

• A rotation vector is a convenient and most compact representation of a 
rotation matrix (since any rotation matrix has just 3 degrees of freedom).



• We can use cv::Rodrigues to transform from camera vector to 
camera matrix or vice versa

cv::Rodrigues()



We calibrated the camera, what’s next?

• We want to provide that the straight lines in the real world are also 
straight in the image

• Image should be undistorted using the acquired distortion 
coefficients



cv::undistort()

• transforms image to compensate radial and tangential lens distortion

• the function is simply a combination of 
cv::initUndistortRectifyMap and cv::remap (with 
bilinear interpolation)

• Those pixels in the destination image, for which there is no 
correspondent pixels in the source image, are filled with zeros (black)

• A particular subset of the source image that will be visible in the 
corrected image can be regulated by newCameraMatrix. Using 
cv::getOptimalNewCameraMatrix compute the appropriate 
newCameraMatrix depending on your requirements.





cv::initUndistortRectifyMap – backwards 
warping

𝑥′՚(𝑢 − 𝑐𝑥)/𝑓𝑥

𝑦′՚(𝑣 − 𝑐𝑦)/𝑓𝑦

𝑟2՚𝑥′
2
+ 𝑦′

2

𝑠
𝑥′′′

𝑦′′′

𝑧′′′
=

𝑥′′

𝑦′′

𝑧′′

m𝑎𝑝𝑥 𝑢, 𝑣 ՚𝑥′′′/𝑓𝑥 +𝑐𝑥

m𝑎𝑝𝑦 𝑢, 𝑣 ՚𝑦′′′/𝑓𝑦 +𝑐𝑦





What’s next?

• With calibrated camera we have acquired important information and 
parameters:
• intrinsics – focal length f and point of lens center on the imager (cx, cy)
• extrinsics – rotation matrix R and translation matrix T
• distortion coefficients

• Knowing the transformation between real world coordinates and 
pixels in the image we can:
• extract information on pose or distance of real world objects
• track object movements
• recreate camera movement
• render 3D structure from camera motion



Projections

• Once we have calibrated the camera, it is possible to unambiguously 
project points in the physical world to points in the image. 

• This means that, given a location in the three-dimensional physical 
coordinate frame attached to the camera, we can compute where on 
the imager, in pixel coordinates, an external three-dimensional point 
should appear. 

FIXED
Calculated for each 

frame again



Projections

• This transformation is accomplished by the OpenCV routine 
cv::projectPoints() 

void cv::projectPoints(
cv::InputArray objectPoints, //vector<Point3f>
cv::InputArray rvec, // Rotation *vector*
cv::InputArray tvec, // Translation vector
cv::InputArray cameraMatrix, // 3x3 Camera intrinsics matrix
cv::InputArray distCoeffs, // 4, 5, or 8 elements vector,
cv::OutputArray imagePoints, // or vector<Point2f>
cv::OutputArray jacobian = cv::noArray(), // Optional,
double aspectRatio = 0 // If nonzero, fix

); 



Three-Dimensional Pose Estimation 

• single camera
• It is possible to compute the pose of a known object with only one camera.
• In addition to being a useful technique in its own right, understanding the 

single-camera pose estimation problem gives important insights into the 
multiple camera problem.

• multiple cameras
• In the multicamera case, we use correspondences between what is

seen from each of the separate cameras to draw conclusions about where the 
object is (i.e., by triangulation).

• The advantage of such a technique is that it will work with even unknown 
objects or entire unknown scenes.

• The disadvantage is that it requires multiple cameras.



Pose Estimation from a Single Camera 

• An object is “known” to the extent that we have identified some number of 
keypoints on the object, whose location we know in the coordinate system 
of the object.

• Now if we are presented with the same object in a novel pose, we can look 
for those same keypoints.

• If we now want to figure out the relationship between the pose of the 
object and the camera, the essential observation is that for each point that 
we find, that point must lie on a particular ray emanating from a pixel 
location on the camera’s imager out through the aperture of the camera.

• Of course, individually we cannot know the distance from the camera to a 
particular point, but given many such constraints, a rigid object will only be 
able to meet all of those constraints one way.





Perspective N-Point (PNP) problem

• We know the relative positions of features in 3D world and, after detection, 
we have corresponding 2D pixel points of the subset of features. What’s 
next?

• This is a PNP problem, which is easily solved with cv::solvePNP()
• solvePNP provides perspective projection – R matrix and T matrix, knowing 

intrinsic and distortion parameters
• The perspective projection matrix, along with the intrinsics and distortion 

params enables us to project any 3D point to our image!
• Note that the PNP problem does not always have a unique solution. There 

are two important cases in which PNP cannot provide reliable results
• when you just don’t have enough points
• when the object is very far away. 



Example – pose of planar object - chessboard

• We want to project 3D 
axis onto our chessboard 
chart in order to visually 
display the rotation of 
the chessboard plane.

• How do we approach this 
problem?



Example – pose of planar object - chessboard

• We have object we known 3D points and we can detect its 2D image 
points – corners of the chessboard

• Can we calculate something from this correspondence?

• Which camera parameters do we need?
• intrinsics – In OpenCV this is called Camera Matrix

• distortion coeffs

• extrinsics

• Which parameters change with chessboard movement?



Example – pose of planar object - chessboard

• Add XYZ axis to the chessboard

• In 3D world we will imagine axis like lines going from the first corner 
to third corner on x axis, from first to third on y axis and for z axis a 
line of the same length in adequate direction.

X

y

Z



Example – pose of planar object - chessboard

• So the solution is simple, we only need to 
• find the perspective projection from 3D world to our 2D imager 
• and project the axis points to 2D

• Open file poseEstimationSingleCamera_template.cpp

• Code already reads out the intrinsics and distortion coeffs

• input params are provided through command line arguments
• size of the calibration chart (14x9 corners)
• file with calibration results (out_camera_data.xml)
• camera ID (0 if it is the only camera, if there are several choose one)
• example of command line args : 14 9 out_camera_data.xml 0



Retrieving camera movement



Camera system vs world system

• We want to calculate the coordinates of the camera origin in the 
world coordinate system

• Which parameters will provide this connection?

• extrinsics



We want it the other way around

• Extrinsics provide transformation from world system to camera 
system

• We want the origin of the camera system given in the world 
coordinates, how will we achieve that?



Example – camera position estimation

• open cameraTrajectoryEstimation_template.cpp

• Code already reads out the intrinsics and distortion coeffs

• input params are provided through command line arguments
• size of the calibration chart (14x9 corners)

• file with calibration results (out_camera_data.xml)

• camera ID (0 if it is the only camera, if there are several choose one)

• example of command line args : 14 9 out_camera_data.xml 0



References

[1] http://docs.opencv.org/master/– OpenCV 3.2.0-dev Documentation

[2] Adrian Kaehler and Gary Bradski. 2016. Learning OpenCV 3: Computer 
Vision in C++ with the OpenCV Library (1st ed.). O'Reilly Media, Inc..

[3] Kenneth Dawson-Howe. 2014. A Practical Introduction to Computer 
Vision with OpenCV (1st ed.). Wiley Publishing.

[4] Zhang, Z. "A Flexible New Technique for Camera Calibration." IEEE 
Transactions on Pattern Analysis and Machine Intelligence. Vol. 22, No. 11, 
2000, pp. 1330–1334.

[5] https://www.mathworks.com/help/vision/ug/camera-calibration.html

[6] http://tnt.etf.bg.ac.rs/~oe4dos/Predavanja/OE4DOS%20-
%20Poboljsanje%20kvaliteta%20slike%20-%20prostorne%20operacije.pdf

http://docs.opencv.org/master/
https://www.mathworks.com/help/vision/ug/camera-calibration.html
http://tnt.etf.bg.ac.rs/~oe4dos/Predavanja/OE4DOS - Poboljsanje kvaliteta slike - prostorne operacije.pdf

