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1 Introduction
Two operations are necessary to transform an analog waveform into a digital signal. The first action,
sampling, consists of converting a continuous-time input into a discrete-time sequence. The second operation
is the process of approximating continuous-space amplitude values by a discrete set of possible points. This
process, termed quantization, is also essential to transmit an analog signal over digital media. Quantization
invariably induces a loss in signal quality. The distortion between the original and quantized functions is
usually unwanted, and cannot be reversed. Yet, for a specific application, the level of signal degradation can
be controlled [1].

In this article, we focus primarily on the quantization of real numbers. The techniques described here
can easily be extended to complex numbers by quantizing the real and imaginary parts separately. In a more
abstract sense, the quantization of a complex number is equivalent to the vector quantization of a pair of
real numbers.

2 Random Processes
To understand the effects of quantization, we first have to observe and understand the spectral behavior of
white noise and colored noise. The power of a white-noise process is spread uniformly across the full spectrum
[−π, π], whereas the power of a colored noise process is spread non-uniformly across the spectrum. Let X[n]
be a stationary discrete-time real-valued white-noise process whose sample at time index n is denoted by the
random variable X[n]. For example, one can generate a length-L sample from such a random process using
the Matlab command x=randn(1,L). The autocorrelation function of a real-valued random process X[n] is
defined to be

RXX [n1, n2] , E
[
X[n1]X[n2]

]
.

If the process is wide-sense stationary, then RXX [n1, n2] only depends on τ = n2 − n1 ∈ {. . . ,−1, 0, 1, . . .}
and we can write the autocorrelation function as

RX [τ ] , E
[
X[n]X[n− τ ]

]
= E

[
X[n]X[n+ τ ]

]
.

Similar to deterministic signals, the power spectral density is related to it as SX(ejω) = F (RX [τ ]), where
F represents the discrete-time Fourier transform operator.

Now, let us consider the particular example of a white noise process generated from the standard normal
distribution N (0, 1). So each X[n] is independent and distributed according to X[n] ∼ N (0, 1). From the
definition of this distribution we know that if Z ∼ N (0, 1) then its mean is E[Z] = 0 and its variance is
E[Z2] = 1. Therefore, for our Gaussian white noise process, we have E

[
X[n]

]
= 0 and E

[
X[n]2

]
= 1. Let

us now compute the autocorrelation function and power spectral density of this process. For τ = 0, we
get RX [0] = E

[
X[n]2

]
= 1. For τ > 0, observe that X[n] and X[n + τ ] are two independent standard

normal random variables. Since they are independent, the expectation of their product is the product of
their expectations,

RX [τ ] = E
[
X[n]X[n+ τ ]

]
= E

[
X[n]

]
· E
[
X[n+ τ ]

]
= 0 · 0 = 0.

∗Thanks to Narayanan Rengaswamy for typesetting these notes and contributing some new material.
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Hence we have

RX [τ ] =
{

1 , τ = 0
0 , τ 6= 0

,

which is a discrete-time impulse function. This means the noise process is completely uncorrelated with itself
for any non-zero lag. Computing the DTFT, we see that the power spectral density is given by SX(ejΩ) = 1
and hence the process is “white”.

Next, let us run this process X[n] through a high-pass filter whose impulse response is given by h[n] =
δ[n] − δ[n − 1]. Hence the output process is given by Y [n] = X[n] −X[n − 1]. Let us proceed to compute
the autocorrelation function of the process Y [n]. We have

RY [τ ] , E
[
Y [n]Y [n+ τ ]

]
= E

[
(X[n]−X[n− 1]) (X[n+ τ ]−X[n+ τ − 1])

]
= E

[
X[n]X[n+ τ ]

]
− E

[
X[n]X[n+ τ − 1]

]
− E

[
X[n− 1]X[n+ τ ]

]
+ E

[
X[n− 1]X[n+ τ − 1]

]

=


1 + 0 + 0 + 1 if τ = 0
0− 1− 0 + 0 if τ = 1
0− 0− 1 + 0 if τ = −1
0− 0− 0 + 0 if |τ | > 1

=


2 if τ = 0
−1 if τ = 1
−1 if τ = −1
0 if |τ | > 1.

Therefore the power spectral density is

SY (ejΩ) =
∞∑

τ=−∞
RY [τ ]e−jΩτ

= 2e−jΩ(0) −
(
e−jΩ(1) + e+jΩ(1)

)
= 2(1− cos(Ω)) = 4 sin2

(
Ω
2

)
,

which equals the magnitude squared
∣∣H(ejΩ)

∣∣2 of the high-pass filter h[n] and is clearly not uniform on
[−π, π]. Since this spectrum has more power at high frequencies than low frequencies, the noise process Y [n]
is called “colored” noise.

3 Scalar Quantizers
Quantizers are generally designed to be very robust for a large class of signals. In scalar quantization, each
source value is processed individually; the input value is mapped to an output taking one of finitely many
values. The number of quantization levels is typically chosen to be a power-of-2 because the outputs are
usually represented using binary strings. Mathematically, a quantizer is a function that maps its input to a
value from a finite set. Hence, one can generally define the quantizer as a function Q : R 7→ Q with output

x̂ = Q(x).

A quantizer can separate its input space into intervals of either uniform or non-uniform lengths and map all
points within one interval to a particular output level from the set Q. Consider uniform quantization and
let ∆ be the quantization step size. Then we will use the following quantizer function for our purposes of
audio processing:

Q(x) =
⌊
x

∆ + 1
2

⌋
∆ = round

( x
∆

)
∆. (1)

Figure 1 depicts this uniform quantizer graphically.
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Figure 1: Graphical representation of the quantizer given by eqn. (1). The circles indicate points not
included on the curve.

3.1 Quantization Noise
Let us now analyze our quantization scheme. If x[n] is our input signal with continuous amplitudes, we
model the quantized signal x̂[n] with an additive error model:

x̂[n] , Q(x[n]) = x[n] + e[n],

where e[n] is the quantization error or quantization noise signal. Error due to rounding is called granular
distortion. If the signal is unbounded and the number of the number of quantization levels is finite, there can
also be errors due to saturation, which is called overload distortion. To quantify the amount of distortion
introduced by quantization, we can measure the power in e[n]. The average power in e[n] is defined as

Pe , lim
N→∞

1
2N + 1

N∑
n=−N

|e[n]|2 =
∫ ∞
−∞

fX(x)|x−Q(x)|2dx,

where fX(x) is the probability density function of the signal amplitude and the second term is the squared
error due to quantization. Note that this relationship between the time average of the noise power and
the statistical average of the noise power holds under mild conditions, such as if the process is wide-sense
stationary.

In general, the average power of the quantization noise depends on the distribution of the signal amplitude.
A very important observation is that this dependence is very weak when ∆ is small and fX(x) is continuous.
Under these conditions, the signal amplitude, conditioned on Q(X) = k∆ for integer k, is approximately
uniform over the interval

[
(k − 1

2 )∆, (k + 1
2 )∆

]
irrespective of the true distribution of the signal amplitude.

Thus, the quantization noise power, conditioned on Q(X) = k∆ for integer k, satisfies

Pe ≈
∫ ∆

2 +k∆

−∆
2 +k∆

1
∆ |x−Q(x)|2dx

=
∫ ∆

2 +k∆

−∆
2 +k∆

1
∆ |x− k∆|2dx

= 1
∆

∫ ∆
2

−∆
2

x2dx

= 1
∆

x3

3

∣∣∣∣∆/2
−∆/2
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= ∆2

12 .

For the quantization of a signal with amplitudes in [−1, 1] to m bits per sample, we have 2m levels that
uniformly divide the interval [−1, 1] into subintervals of length ∆. Hence, we have

2
∆ = 2m ⇒ ∆ = 2−m+1

and the quantization noise power is

Pe = ∆2

12 = 2−2m+2

12 = 2−2m

3 .

The signal-to-quantization-noise-ration (SQNR) is defined as

SQNR = Px
Pe

=
∫
fX(x)|x|2dx∫

fX(x)|x−Q(x)|2dx
. (2)

If x[n] is a full-scale sinusoid x[n] = cos(Ω0n + φ), then Px = 1
2 and hence SQNR = 3

2 · 2
2m, which on the

log-scale gives

SQNR = 10 log10

(
3
2 · 2

2m
)

= 6.02m+ 1.76 (dB).

Hence every bit increase in the quantization scheme improves the SQNR by approximately 6 dB and the
additional factor is a constant dependent on the signal power.

3.2 Dithering
While the SQNR accurately measures the increase in noise power caused by quantization, it does not give
any information about the spectral content of the quantization noise. For many applications, it is also
important that the quantization noise be white (i.e., uncorrelated in time). To see the problem with standard
quantization, consider the periodic signal xn that satisfies xn+N = xn. In this case, the quantized version
yn = Q(xn) and the quantization error en = yn − xn are also periodic. Therefore, the spectral energy of the
quantization noise is concentrated in the harmonics of the fundamental frequency, which introduces audible
distortions.

Since the quantizer affects only one value at a time, one may wonder how the quantization noise becomes
correlated. The mechanism for this phenomenon can be explained through the fact that the quantization
noise is correlated with the input value. For example, one can compute this correlation for our quantizer
and obtain

EX [X (X −Q(X)) |Q(X) = k∆] =
∫ ∆

2 +k∆

−∆
2 +k∆

1
∆x(x−Q(x))dx

= 1
∆

x3

3

∣∣∣∣∣
∆
2 +k∆

−∆
2 +k∆

−k∆
∆

x2

2

∣∣∣∣∣
∆
2 +k∆

−∆
2 +k∆


= 1

3∆

[(
∆
2 + k∆

)3
−
(
−∆

2 + k∆
)3
]
− k

2

[(
∆
2 + k∆

)2
−
(
−∆

2 + k∆
)2
]

= 1
3∆

[
∆
{(

∆
2 + k∆

)2
+
(

∆
2 + k∆

)(
−∆

2 + k∆
)

+
(
−∆

2 + k∆
)2
}]
− k

2 ·
4k∆2

2

= 1
3∆

[
∆
{

2
(

∆
2

)2
+ 2 (k∆)2 + (k∆)2 −

(
∆
2

)2
}]
− k2∆2
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= 1
3∆

[
∆
{

∆2

4 + 3k2∆2
}]
− k2∆2

= ∆2

12 + k2∆2 − k2∆2

= ∆2

12 .

From this, we see that the correlation is the same as the mean squared error computed previously as Pe.
This meams that the quantization noise is as correlated with the original signal as it is with itself. For a
pure sinusoid, the quantization noise consists of spurious harmonics whose total power is equal to the total
quantization noise power.

The process of adding a small amount of noise before quantization is called dithering. Of course, the
added noise increases the overall noise power in the system by a small amount . But, if the noise sequence is
chosen to be independent and uniformly distributed over one quantization interval, then the above correlation
becomes exactly zero. To see this, we use our quantizer Q(x) and let Z be a uniform random variable on[
−∆

2 ,
∆
2
]
. In this case, we get

EZ [Q(X + Z)|X = x] =
∫ ∆

2

−∆
2

1
∆Q(x+ z)dz

= 1
∆

∫ ∆
2

−∆
2

⌊
x+ z

∆ + 1
2

⌋
∆dz

=
∫ x

∆ +1

x
∆

byc∆dy
(
y ,

x+ z

∆ + 1
2

)
= ∆

[⌊ x
∆

⌋(
1−

{ x
∆

})
+
(⌊ x

∆

⌋
+ 1
){ x

∆

}]
= ∆

[⌊ x
∆

⌋
+
{ x

∆

}]
= ∆ · x∆
= x,

where {x} , x − bxc is the fractional part of x. Hence, the added uniform noise ensures that the signal
values are preserved on average by the quantization process. Using this, we can compute

EZ [X (X −Q(X + Z)) |Q(X) = k∆] =
∫ ∆

2 +k∆

−∆
2 +k∆

fX(x)
∫ ∆

2

−∆
2

fZ(z)x(x−Q(x+ z)) dz dx

= 1
∆

∫ ∆
2 +k∆

−∆
2 +k∆

x(x− x) dx = 0.

Even more generaly, we observe that

EX,Z [X (X −Q(X + Z))] =
∫ ∞
−∞

fX(x)
∫ ∆

2

−∆
2

fZ(z)x(x−Q(x+ z)) dz dx

=
∫ ∞
−∞

fX(x)x(x− x) dx = 0.

This implies that the quantization noise is uncorrelated with the signal. With a little more work, one can
also show that it is white (i.e., uncorrelated with time-shifts of itself). However, the addition of uniform
dither increases the average quantization noise power by ∆2

12 as shown in Appendix A. In high-end audio
applications, it is more common to add dither with a triangular PDF over one quantization interval since
this prevents noise modulation and other audible artifacts. In that case, the noise power is increased by ∆2

6 .
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C/D
xa(t)

T = 1
2BM

+
x[n]

e[n]

LPF
Ωc = π

M

x̂[n] =

x[n] + e[n]
↓M

xd[n] =

xda[n] + xde[n]

Figure 2: The oversampled A/D conversion process diagram.

Ω

X̂(ejΩ) = X(ejΩ) + E(ejΩ)

−π − π
M
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π
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E(ejΩ) = σ2
e

Figure 3: The DTFT of oversampled quantized signal x̂[n].

4 Analog-to-Digital (A/D) Conversion
As mentioned earlier, in order to convert an analog signal xa(t) into a digital signal x̂[n], we have to first
sample it in time to produce x[n] = xa(nT ), where T is our sampling period, and then quantize the sample
amplitudes to obtain x̂[n] = Q(x[n]), where Q(·) is the quantizer. If the signal of interest is not band-limited
to 1

2T Hz, then energy above the Nyquist frequency could be aliased down into the band of interest. In order
to prevent this, we assume the signal xa(t) is pre-filtered using an anti-aliasing filter designed to bandlimit
the signal to Fs

2 = 1
2T Hz. For example, an ideal anti-aliasing filter would have the frequency response

Hlp(ejΩ) =
{

1 if |Ω| ≤ π
T

0 if π
T < |Ω| ≤ π.

After prefiltering, the signal is denoted xa(t) and passed through a sample-and-hold circuit that “samples”
the signal every T seconds and “holds” the value for the same interval of time. During the hold time, the
A/D converter quantizes the signal value. The signal obtained at the output of the sample-and-hold circuit
is given by

xsh(t) =
∞∑

n=−∞
xa(nT )hsh(t− nT ) =

( ∞∑
n=−∞

xa(nT )δ(t− nT )
)
∗ hsh(t),

where

hsh(t) =
{

1 if 0 ≤ t < T

0 otherwise

is the sample-and-hold filter response. The discrete-time signal is obtained from this signal as x[n] =
xsh(nT ) = xa(nT ). Next, we need to convert the continuous amplitudes of x[n] into a sequence of values
obtained from a discrete set of values Q. This is precisely the purpose of the quantizer and hence we obtain
the fully digital signal x̂[n] = Q(x[n]). For a more detailed discussion of A/D conversion, see [2, Section 4.8].

4.1 Oversampled A/D Conversion
Consider a signal xsh(t) with bandwidth B Hz which is sampled at Fs = 2BM Hz, where M is the oversam-
pling factor, and then quantized to obtain x̂[n] = Q(x[n] + z[n]). Recollect that oversampling compresses
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C/D
xa(t)

T = 1
2BM

+
x[n]

+

−

1
1−z−1

w[n]
+

v[n]

e[n]

LPF
ωc = π

M

y[n]

z−1
y[n− 1]

↓M
xd[n] =

xda[n] + xde[n]

Figure 4: Block diagram for oversampled A/D conversion with noise shaping where e[n] represents the
quantization error.
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Figure 5: Power spectral density of signal and noise after noise shaping.

the spectrum in [−π, π] to
[
− π
M , πM

]
and also introduces periodic repetitions of this shrinked spectrum with

period 2π
M . Hence we need to pass this signal through a low-pass filter with cutoff frequency π

M and then
quantize to obtain x̂[n]. The process is shown in Figure 2.

The quantization noise signal is defined to be e[n] = x[n]− x̂[n]. Under mild conditions, the noise can be
modeled as white noise with noise power σ2

e = 1
32−2m, where m is the number of bits allocated per quantized

sample. In that case, an example of the power spectrum (i.e., expected value of the DTFT magnitude-
squared) of x̂[n] is shown in Figure 3. Observe that oversampling reduces the overlap between the signal
spectrum and the quantization noise spectrum. Using Parseval’s theorem, we can compute the noise power
in the signal bandwidth as

Pe = 1
2π

∫ π
M

− π
M

1
32−2mdΩ = 1

3M 2−2m.

Hence, after low-pass filtering, the SQNR has increased by a factor of M due to oversampling! For more
details on oversampled A/D conversion, see [2, Section 4.9.1].

4.2 Oversampled A/D Conversion with Noise Shaping
We can rewrite the quantization noise power achieved by oversampling as

log2 (3MPe) = −2m⇒ m = −1
2 log2M −

1
2 log2 Pe −

1
2 log2 3.

Now observe that, for a fixed quantization noise power Pe, doubling the oversampling factor M reduces the
quantization resolution by half-a-bit. So if we want to reduce the resolution of the system by 1 bit, we need
to oversample by a factor of 4. This means to reduce 16 bit resolution to 12 bit resolution, we need to
oversample by a factor of 44 = 256! Instead, we can achieve the same noise power (in the signal spectrum)
if we “shape” the uniform noise in Figure 3 so that most of the noise energy is outside

[
− π
M , πM

]
. The block

diagram for this procedure is given in Figure 4.
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Let us observe the operations of this procedure and try to understand how noise shaping is achieved.
Assuming a dither zequence z[n], we have

w[n] = x[n]− y[n− 1], v[n] = v[n− 1] + w[n],
e[n] = Q(v[n] + z[n])− v[n], y[n] = Q(v[n] + z[n]).

By applying the z-transform to all equations, we use algebraic manipulations to eliminate V (z) and obtain

W (z) = X(z)− z−1Y (z)
V (z) = z−1V (z) +W (z) = z−1V (z) +X(z)− z−1Y (z)
V (z) = Y (z)− E(z)

⇒ Y (z)− E(z) = z−1 (Y (z)− E(z)) +X(z)− z−1Y (z)
⇒ Y (z) = E(z)

(
1− z−1)+X(z).

Now we see that the quantization noise is filtered by He(z) = 1− z−1, which is an differentiator or, in other
words, a first order high-pass filter. The difference equation is ê[n] = e[n] − e[n − 1]. We know that the
power spectral density of this filter is

∣∣He(ejΩ)
∣∣2 = 4 sin2(Ω/2). Therefore, the power spectral density of the

filtered noise is given by

Sê
(
ejΩ
)

= σ2
e

∣∣He(ejΩ)
∣∣2 = σ2

e · 4 sin2
(

Ω
2

)
.

This is shown in Figure 5. Observe that now most of the noise energy is outside the signal bandwidth.
Assuming the dither sequence z[n] = 0, we can compute the quantization noise power in

[
− π
M , πM

]
with

Pe = 1
2π

∫ π
M

− π
M

Sê
(
ejΩ
)
dΩ

= 1
2π

∫ π
M

− π
M

∆2

12 4 sin2
(

Ω
2

)
dΩ

≤ 1
2π

∆2

12

∫ π
M

− π
M

4 · ω
2

4 dΩ

= ∆2

12
1

2π
1
3 · 2 ·

π3

M3

= ∆2

12 ·
π2

3M3 .

Therefore, we get a SQNR gain of 10 log10

(
3M3

π2

)
≈ 9 log2M − 5.17 dB! Also, while doubling M resulted in

just a 1/2-bit increase in resolution without noise shaping, now doubling M results in a 1.5-bit increase in
resolution. Due to assumptions about e[n], this analysis is somewhat suspect without dither. If instead, we
assume the dither z[n] is uniform over [−∆

2 ,
∆
2 ], then Appendix A shows that the resulting noise power is

doubled.
This is called first-order noise shaping and one can improve the transfer function to He(z) =

(
1− z−1)p

by adding p stages of noise shaping. The resulting PSD would be Sê
(
ejΩ
)

= σ2
e

(
2 sin2 (Ω

2
))p. However, in

practice circuit limitations dominate if order is larger than 2 or 3. For more details on oversampled A/D
conversion with noise shaping, see [2, Section 4.9.2].

4.3 Oversampled D/A Conversion
Now we extend the ideas discussed above to convert a digital signal into an analog signal. A simple over-
sampled D/A conversion can be realized using the process shown in Figure 6. In this model, the signal yd[n]
is a discrete-amplitude signal of bandwidth at most B Hz sampled at 2B Hz. This signal is upsampled to
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↑M
yd[n]

LPF
Gain = M
Ωc = π

M

Sampling rate increase by M

+

e[n]

ŷ[n]
D/C

T = 1
2BM

y[n] =

ŷ[n] + e[n]
ya(t)

Figure 6: Oversampled D/A conversion without noise shaping. The quantization error is denoted by e[n].

+
ŷ[n]

+
+

w[n]

e[n]

y[n]

+
+−

z−1

−

Figure 7: Oversampled D/A conversion with noise shaping.

2BM Hz and the result is the signal ŷ[n] which is a higher-resolution discrete-amplitude signal. The signal
y[n] is a continuous-amplitude signal generatedas the output of a low-resolution D/A converter.

The performance of this simple system may be improved by shaping the quantization noise. This is
especially if the performance metric (e.g., Human listening tests) responds differently to noise at different
frequencies. A simple noise-shaping D/A can be implemented as shown in Figure 7. Let us again look at
the relationships between different signals in the diagram. Using the dither sequence z[n], this gives

w[n] = ŷ[n]− y[n− 1] + w[n− 1]
y[n] = Q(w[n] + z[n])
e[n] = Q(w[n] + z[n])− w[n]

⇒ w[n] = y[n]− e[n].

Now taking the z-transform, we obtain

W (z) = Ŷ (z)− z−1Y (z) + z−1W (z)
W (z) = Y (z)− E(z)

⇒ Y (z)− E(z) = Ŷ (z)− z−1Y (z) + z−1 (Y (z)− E(z))
⇒ Y (z) = Ŷ (z) + E(z)

(
1− z−1) .

Hence we again see that the noise is shaped by the high-pass filter He(z) = 1 − z−1. Therefore the noise
power spectral density is again Sê

(
ejΩ
)

= σ2
e

∣∣He(ejΩ)
∣∣2 = σ2

e · 4 sin2 (Ω
2
)
, where the value of σ2

e depends on
the quantization step size and the choice of dither sequence.
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A Dither Increases Noise Power
In this appendix, we will show that the addition of uniform dither before quantization increases the average
noise power. First let us compute the squared error for a particular value of X, averaged over the noise PDF.

EZ

[
(X −Q(X + Z))2

∣∣∣X = x
]

=
∫ ∆

2

− ∆
2

1
∆

(
x−

⌊
x + z

∆ + 1
2

⌋
∆
)2

dz

= 1
∆x2 ·∆− 2x · x + ∆

∫ ∆
2

− ∆
2

⌊
x + z

∆ + 1
2

⌋2
dz

= −x2 + ∆2
∫ x

∆ +1

x
∆

byc2 dy
(

y ,
x + z

∆ + 1
2

)
= −x2 + ∆2

[⌊
x

∆

⌋2 (
1−

{
x

∆

})
+
(⌊

x

∆

⌋
+ 1
)2 { x

∆

}]
= −x2 + ∆2

[⌊
x

∆

⌋2
−
⌊

x

∆

⌋2 { x

∆

}
+
⌊

x

∆

⌋2 { x

∆

}
+ 2
⌊

x

∆

⌋{
x

∆

}
+
{

x

∆

}]
= −x2 + ∆2

[(⌊
x

∆

⌋
+
{

x

∆

})2
−
{

x

∆

}2
+
{

x

∆

}]
= −x2 + ∆2 · x2

∆2 + ∆2 ·
{

x

∆

}[
1−

{
x

∆

}]
= ∆2

{
x

∆

}[
1−

{
x

∆

}]
.

Pe =
∫ ∆

2 +k∆

− ∆
2 +k∆

fX(x)EZ

[
(X −Q(X + Z))2 |X = x

]
dx

= 1
∆

∫ ∆
2 +k∆

− ∆
2 +k∆

∆2
{

x

∆

}[
1−

{
x

∆

}]
dx

= ∆
∫ k∆

− ∆
2 +k∆

(
k − x

∆

)(
1− k + x

∆

)
dx + ∆

∫ ∆
2 +k∆

k∆

(
x

∆ − k
)(

1− x

∆ + k
)

dx

= ∆
∫ k∆

− ∆
2 +k∆

(
k − k2 + kx

∆ − x

∆ + kx

∆ − x2

∆2

)
dx + ∆

∫ ∆
2 +k∆

k∆

(
x

∆ −
x2

∆2 + kx

∆ − k + kx

∆ − k2
)

dx

= ∆k · ∆
2 −∆k2 · ∆

2 + (2k − 1)x2

2

∣∣∣∣∣
k∆

− ∆
2 +k∆

− 1
∆ ·

x3

3

∣∣∣∣∣
k∆

− ∆
2 +k∆

−∆k · ∆
2 −∆k2 · ∆

2 + (2k + 1)x2

2

∣∣∣∣∣
∆
2 +k∆

k∆

− 1
∆ ·

x3

3

∣∣∣∣∣
∆
2 +k∆

k∆

= −∆2k2 + k

[(
∆
2 + k∆

)2

−
(
−∆

2 + k∆
)2
]

+ 1
2

(
∆
2 + k∆

)2

− 1
2k2∆2

− 1
2k2∆2 + 1

2

(
−∆

2 + k∆
)2

− 1
3∆

[(
∆
2 + k∆

)3

−
(
−∆

2 + k∆
)3
]

= −2∆2k2 + k · 4∆
2 · k∆ + ∆2

4 + k2∆2 − 1
3∆∆

[
2∆2

4 + 2k2∆2 + k2∆2 − ∆2

4

]
= ∆2

4 + k2∆2 − k2∆2 − ∆2

12

= ∆2

6 .

Hence the addition of a uniform dither increases the average noise power by ∆2

12 .
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