
DSP DesignLine | FPGAs vs. DSPs: A look at the unanswered questions http://www.dspdesignline.com/196802403;jsessionid=K4WYG2I0VJQ...

1 of 5 2/7/2008 3:40 PM

January 11, 2007

start:FPGAs vs. DSPs: A look at the unanswered questions

BDTI looks at the open questions about FPGAs' performance, cost,

power, and ease of development. It also explains why FPGAs might

benefit from the move to deep-submicron processes.

BDTI recently completed an in-depth analysis of FPGAs'
suitability for DSP applications. We found that, in some
high-performance signal processing applications, FPGAs have
several significant advantages over high-end DSP processors.

Our recent benchmark results (shown in Figure 1), for example, have shown
that high-end, DSP-oriented FPGAs have a huge throughput advantage over
high-performance DSP processors for certain types of signal processing.
And FPGAs, which are not constrained by a specific instruction set or
hardwired processing units, are much more flexible than processors.

Figure 1. Results of the BDTI Communications Benchmark (OFDM)™

If market success were based solely on throughput or flexibility, FPGAs
would appear to be on the verge of taking over the DSP market; in fact,
according to a recent report from market research firm Forward Concepts, in
2005 Altera and Xilinx each had DSP FPGA revenues in excess of $200
million, selling more non-cell-phone DSP silicon than Freescale and Agere.

But of course, it's not that simple. Development effort, energy efficiency,
cost-effectiveness, staff expertise, and market inertia (among other
attributes) will all play a role in determining whether FPGAs become a
dominant technology for DSP systems.

In this article, we'll share some of the key open questions that we've
identified during the course of our analysis. These factors will affect FPGAs'
success in DSP markets, and will be of significant interest to system
designers who are considering using FPGAs in their signal processing
systems.

Are FPGAs energy hogs, or not?
Energy efficiency is often a critical metric for signal processing applications.

gfedcb All gfedc Articles gfedc Products gfedc Courses gfedc Papers gfedc News gfedc Webinars gfedc Web

Site Search:

Welcome, Guest Home RSS Design Center Learning Center Product Center News Blogs Forums Careers Site Features

DSP DesignLine | FPGAs vs. DSPs: A look at the unanswered questions http://www.dspdesignline.com/196802403;jsessionid=K4WYG2I0VJQ...

2 of 5 2/7/2008 3:40 PM

Battery-powered products are highly sensitive to energy consumption, and
even line-powered products are often sensitive to power consumption,
though it may be on a per-channel or per-unit-area basis. FPGAs have long
been viewed as too power-hungry for most DSP applications, but we believe
that this may be an obsolete perspective.

FPGAs use highly flexible architectures, and this flexibility is perhaps their
greatest advantage. But flexibility comes with a hardware cost. More flexibility
generally means more gates, more silicon area, more routing
resources—and higher energy consumption. For this reason, FPGAs are
generally less energy efficient than chips with dedicated hardware, such as
ASICs.

But how do FPGAs compare to DSP processors? DSPs are highly tailored
for efficient implementation of common DSP tasks, and thus many engineers
assume that they are more energy-efficient than FPGAs. But DSP
processors have their own inefficiencies. In a DSP, only a tiny fraction of the
silicon is devoted to computation; most of the silicon area and most of the
energy is devoted to moving instructions and data around. Hence, it would be
a mistake to assume that FPGAs are inherently less energy efficient than
DSPs.

In some high-performance signal processing applications, for example,
FPGAs can take advantage of their highly parallel architectures and offer
much higher throughput than DSPs. As a result, FPGAs' overall energy
consumption may be significantly lower than that of DSP processors, in spite
of the fact that their chip-level power consumption is often higher.

Unfortunately, there is a dearth of accurate, apples-to-apples energy
consumption data for FPGAs and DSP processors, making it difficult to
compare their energy efficiency As part of the analysis for our recent report

comparing FPGAs to DSPs, "FPGAs for DSP, 2nd Edition," BDTI did its own
"back of the envelope" comparisons of the energy efficiency of FPGAs and
DSPs. Based on anecdotal data about FPGA power consumption, we
estimated that high-end FPGAs implementing demanding DSP applications,
such as that embodied in the BDTI Communications Benchmark (OFDM)™,
consume on the order of 10 watts, while high-end DSPs consume roughly
2-3 watts. Our benchmark results have shown that high-end FPGAs can
support roughly 10 to 100 times more channels on this benchmark than
high-end DSPs, suggesting that their energy consumption per channel is
significantly lower than that of DSPs. This contradicts the common view that
FPGAs are energy hogs.

Obviously our comparison is based on very rough estimates. While we
believe that FPGAs' energy efficiency is likely to be competitive—or even
superior—to that of DSPs in many high-performance signal processing
applications, this is still an open question. What's needed is a rigorous,
well-controlled analysis of power consumption under comparable conditions.

Furthermore, the above analysis is only meaningful in the context of
high-performance signal processing applications. Estimating the relative
energy efficiency of FPGAs and processors for less-demanding signal
processing applications would require a slightly different benchmarking
approach and the evaluation of different chips (e.g., lower-power processors
and smaller FPGAs); this is another area that's ripe for further investigation.

Just how useful are the new high-level tools?
Implementing a DSP application on an FPGA typically takes much more
effort than implementing the same application on a DSP processor—it's not
uncommon for an FPGA implementation to require five times as long as the
equivalent DSP processor implementation. This huge difference translates
into higher cost and slower time-to-market, which can be deal-breakers for
many DSP-oriented products. For this reason, a number of vendors have

DSP DesignLine | FPGAs vs. DSPs: A look at the unanswered questions http://www.dspdesignline.com/196802403;jsessionid=K4WYG2I0VJQ...

3 of 5 2/7/2008 3:40 PM

introduced high-level synthesis tools to help address the challenges of
implementing signal processing applications on FPGAs. These tools enable
the user to generate an FPGA implementation from a high-level
representation, such as a Simulink block diagram, thus sidestepping the
need to work with cumbersome hardware description languages. Figure 2
illustrates this concept.

(Click to enlarge)
Figure 2. Typical high-level tool flow

Such tools aren't a new idea: ten years ago there was a similar wave of
high-level synthesis tools targeting ASICs. Unfortunately, those tools never
caught on. They promised more than they could deliver, and required
engineers to do their work in new and unfamiliar ways—by using new
languages, for example. The new synthesis tools aren't yet in widespread
use; most engineers still "program" FPGAs the old-fashioned way, using
hardware languages—but that is slowly changing. Whether the tools
ultimately cause a major shift in how FPGAs are used (and by whom) will
depend on a number of factors, including the following:

For tools that support designs expressed in C, is it standard C, or a
variant of C that's not actually portable and is unfamiliar to most
engineers? Can designers use their existing C algorithm representation,
or will they effectively have to rewrite their code to use the tool?

1.

What level of efficiency (in terms of the throughput and resource usage
of the generated design) is sacrificed by using high-level synthesis
rather than doing the work by hand with traditional, RTL-based design?
And what level of efficiency (relative to traditional design) is really
needed for the tool to be attractive?

2.

What is the scope of applications that the synthesis tool is intended to
handle? Is it geared mainly for signal processing, or can it also handle
packet processing?

3.

How much of a design can the tool implement? For example, tool
vendors often show how efficient their tools are at generating FIR filters
from high-level requirements. That's useful, but designers need to get
data into and out of that filter, perhaps using chip I/O pins, buffering,
bitstream parsing, or other steps. Does the tool handle the complete
design?

4.

What building blocks are provided? If an application relies on unique
blocks not supplied by the vendor, what are the implications for
productivity and quality of results?

5.

Can FPGAs use extra gates better than processors?
As the industry moves to 65 nm processes, 45 nm processes, and beyond,
the most obvious and reliable benefit is the ability to pack more circuits onto
a given silicon die. Traditionally, processor designers have leveraged this
additional circuitry to implement more-complex processors. These
processors boost performance via sophisticated instruction sets and
microarchitectures, including deep pipelines and multiple execution units. But
such architectural techniques quickly reach a point of diminishing returns. For

DSP DesignLine | FPGAs vs. DSPs: A look at the unanswered questions http://www.dspdesignline.com/196802403;jsessionid=K4WYG2I0VJQ...

4 of 5 2/7/2008 3:40 PM

example, adding execution units to a processor results in smaller and smaller
performance and efficiency gains as the number of execution units
increases. This is due to difficulties in finding and extracting suitable
parallelism from applications (especially when the applications are expressed
in inherently sequential languages, like C) and to bottlenecks elsewhere in
the processor, such as in data memory bandwidth. For this reason, we don't
routinely see, for example, processors with 16 or 32 execution units. As a
result, in recent years processor designers have used most of their expanded
gate budgets to incorporate more on-chip memory. Increased on-chip
memory can boost performance and efficiency, but again it quickly reaches
the point of diminishing returns.

Recognizing that it has reached the point of diminishing returns in scaling
single-core processors for higher performance with advancing fabrication
processes, the processor industry has turned its attention to multi-core
processors. However, with limited exceptions, the development process for
mapping an application onto a multi-core processor differs in important ways
from that associated with single-core processors; tools and techniques for
software development on multi-core processors are not nearly as rich,
mature, and widely understood as those for single-core processors. This is
the key obstacle to the rapid, widespread adoption of multi-core processors.

In contrast, because FPGAs use silicon in a relatively homogeneous way, it is
easier for FPGA manufacturers to take advantage of increased circuit density
to deliver more computation resources to the user. This translates into higher
throughput for applications that can make use of the added parallelism,
without changing the methods used by developers to map their applications
onto the chips.

This is not to say that implementing applications on FPGAs is easier than
implementing applications on multi-core processors. Rather, our point is that,
as fabrication processes enable more circuitry on a chip, FPGAs can make
good use of this added capacity without requiring a change in the design
tools and methods utilized by FPGA users. In contrast, as processor
designers switch from single-core to multi-core architectures, in most cases
new application development techniques and tools will be required.

If, as we've speculated here, FPGAs are able to make better use of
additional gates than processors do, this may give them a significant
advantage over the long term. But the outcome will also depend on whether
processor vendors are able to deliver tools that make multi-core software
development faster and less painful.

Conclusions
BDTI plans to conduct further analysis of FPGA energy efficiency and
high-level tools in the future, and we will continue to evaluate the signal
processing capabilities of new FPGAs and processors.

DSP processors have been the dominant processing engines for many DSP
applications for decades, but that may be changing. FPGAs clearly have
many advantages relative to DSP processors for some high-performance
applications; while they are unlikely to completely eliminate the need for
DSPs, they may well invade—or even take over—many of the applications in
which DSP processors are used today.

About BDTI
BDTI enables engineers, marketers, and managers to make confident
technical and business decisions about technologies for signal processing
applications. For more BDTI resources, see www.BDTI.com.

