
High-precision FIR filters are used in myriad medical, military,
and high-volume consumer applications. However, given the
choice of stand-alone Microcontroller Units (MCUs), DSPs,
FPGAs, or dedicated Finite Impulse Response (FIR) ICs, only
the latter balances cost, power, size, and precision performance.

FIR filters form the basis of wireless systems in medical devices,
industrial control, consumer electronics, and cellular infrastructure.
In fact, they are one of the most common types of digital filters.
These linear time-invariant style filters rely solely on current and
past input samples and not on past outputs, making the resultant
signal directly proportional to the number of taps (summation
series) and a coefficient set used to calculate the output.

FIR filters can be calculated relatively easily using several dif-
ferent IC implementations, including microcontrollers, general
purpose DSP chips, FPGAs, and purpose-built dedicated FIR
devices. While each type has advantages and disadvantages, in
systems requiring the combination of high precision, low cost,
reasonable size, and power, purpose-built FIRs plus low-cost
MCUs represent the best of all worlds. Let’s examine each
option in detail.

Implementation comparison
Several implementation choices are available to designers. Each has
its benefits and risks (Table 1). The first implementation is that of

a microcontroller with a built-in hardware multiplier and enough
data RAM to store data samples to be used in the computation.
The major benefits are that this is a small, low-power implemen-
tation. It is also highly integrated. The microcontroller not only
implements the FIR filter, but can also function as the overall
system controller. The disadvantage is that a microcontroller,
even after adding a hardware multiplier on-chip, still has very
limited computational abilities and is only a viable solution for
relatively simple FIR filters at low sample rates. Also, adding
resources to a microcontroller like a hardware multiplier and
memory significantly increases the cost of the chip.

The second implementation is that of a DSP. The major benefit
of using a DSP is that it provides a large amount of computation
horsepower and a virtually infinite amount of flexibility in design
and algorithm choices. The DSP can also handle medium to large
FIR filters up to very high sample frequencies. The downside of
using DSPs, though, is that they are large devices that burn a
lot of power. They are also relatively expensive and possibly
overkill in systems that run at lower sample frequencies.

The third choice is that of an FPGA. The major benefit of an
FPGA is the ability to implement algorithms in hardware without
losing versatility. FPGAs can support an almost infinite number
of algorithmic choices and provide the highest performance of
all. The downside of using FPGAs is that they are also large

U.S. Air Force photo taken by Tech. Sgt. Jason Tudor

Systems: DSP vs. FPGA – peaceful coexsistence

Implementation trade-offs
of digital FIR filters
By Ed Rocha

FIR basis Pro Con

Microcontroller (MCU) SWaP, integration, CPU decision making
Implements only simple FIR, limited computation, cost

increases with complexity

Dedicated DSP
Flexibility, nearly limitless horsepower, implements large

FIRs and high sample rates
Power hungry, expensive, often overkill in some

systems

FPGA
H/W implementation yet still versatile,

very flexible algorithms
Large and power hungry, requires skilled IC designers,

and cost per chip is high

Purpose-built FIR chip
(such as the SavFIRe)

Fast time-to-market, programming ease, low cost Fixed functionality, requires host controller

Table 1
Military Embedded Systems

©2007 OpenSystems Publishing. Not for Distribution.

Fo
r S
ing
le P
rin
t O
nly

U.S. Air Force photo taken by Tech. Sgt. Jason Tudor

devices that burn more power than any of
the other alternatives. They also require
skilled engineers and considerable design
time to implement. The cost per chip is
the highest of all competing solutions for
a single filter such as the one described
earlier.

The final implementation choice is a
Simple and Versatile FIR Engine or
SavFIRe. The dedicated FIR chip is the
easiest to program and represents the
quickest time-to-market of all solutions.
It is the least expensive of all the solu-
tions and is by far the smallest and most
power-efficient method discussed. The
downside of using this part is that it is a
dedicated FIR filter and cannot be reused
or reconfigured to be anything else.
Using SavFIRe requires some sort of host
controller to run the system. However, an
MCU with filter data storage can cost as
low as $1. The combination of an inex-
pensive, low-power microcontroller along
with the SavFIRe chip represents the best
total system solution in terms of power,
size, time-to-market, and cost.

Example FIR filter for comparison
To make a reasonable comparison
between the different platforms for
implementing the FIR filter, it helps to
have an example. This way we can not
only compute the ability of each platform
to perform the task, but also estimate
comparisons between the platforms’ size,
power, and cost.

The FIR filter we will design is a notched
low-pass filter and has the specifications
shown in Figure 1.

System sample frequency = 1 KHz»»
Notch center frequency = 60 Hz»»
Top notch BW = 50 Hz»»
Bottom notch BW = 38 Hz»»
Notch attenuation = 60 dB»»
Pass-band upper frequency = 250 Hz»»
Pass-band lower frequency = 260 Hz»»
Pass-band ripple = 0.1 dB»»
Stop-band attenuation = 60 dB»»

The approximate number of taps for this
filter is 467.

Microcontroller implementation
A good example of a microcontroller that
can handle a considerable FIR load is
Texas Instruments’ MSP430F169. It has

both a built-in MAC unit and multiple
DMA channels to assist in moving data
and coefficients to and from data memory.
Another significant specification is its 2
KB of memory. This is important because
the microcontroller must have enough

memory to buffer data samples equal to
the number of taps.

Figure 2 shows the data flow of the FIR
filter. The steps needed to calculate each
output of the FIR filter are as follows:

Figure 1

Folded FIR Filter: High-level Conceptual Diagram

X(n)

Data Store A

Write In

Read Out

Data Store B

MAC
Coef Store

coef Y(n)

1
2

N

N = max number of taps

Figure 2

Military Embedded Systems
©2007 OpenSystems Publishing. Not for Distribution.

Fo
r S
ing
le P
rin
t O
nly

Get input sample from ADC»»
Loop N-1 times: Move two input »»
samples from memory to MAC;
move coefficient from memory to
MAC; perform MAC operation
Retrieve output from MAC and store »»
to memory

Table 2 represents some benchmarks »»
for the MSP430F169. Using the
data in the table, we can estimate
the number of clock cycles needed
to calculate a 467-tap filter. After
some interpolation, we come up
with about 3,200 clock cycles. This
indicates a maximum sample rate of
2,500 Hz. We are only sampling at
1,000 Hz. If we add a bit of overhead
to retrieve samples and deliver results
to memory or perform any type of
analysis on the samples, it is fair to
assume that our filter will result in
approximately a 50 percent loading
on the CPU. Table 2 specifies
the benchmarks of the MSP430F169.

The MSP430 family only has a 16 x 16
multiplier in its MAC unit. This means
that designers are limited to 16-bit
data and 16-bit coefficients if they
are to achieve the performance just
mentioned. In many systems, both
data and coefficients can be larger than
16 bits, which could easily result in a per-
formance degradation of 10x or more.

DSP implementation
The steps involved in FIR calculations
are very similar for a DSP compared to a
microcontroller. Differences occur in the
memory usage where the DSP treats the
memory as a circular buffer with pointers
that automatically update. Also, because of
the high amount of parallelism and pipe-
lining in a DSP, most DSPs can execute
the entire MAC operation including fetch-
ing and storing data in one clock cycle
per MAC operation. There is a slight bit
of overhead associated with the beginning
and end of the computation loops, but this
is negligible for a large number of taps.

Using a Texas Instruments lower-end,
fixed-point DSP, the TMS320C55x,
let’s look at our previous filter design.
This DSP is capable of 160 MIPS
with one 32 x 32 multiply each clock

cycle. This equates to 160M/467 taps
per sample = 342 KSps at full speed; this
is more than adequate for our example
application.

FPGA implementation
The available hardware resources in any
given FPGA vary widely depending on
the FPGA vendor, part family, and the
size of the device chosen.

For the 467-tap FIR in our example, let’s
use the smallest FPGA in the Cyclone II
family from Altera. The EP2C5 has about
4.6 K logic elements, 26 M4K blocks (4 Kb
RAMs), and 13 embedded multipliers that
are each 18 x 18 bits wide. To implement the
467-tap filter in our example, there are
many different architectural choices avail-
able using the resources in the FPGA.

The simplest architecture is to use a single
multiplier and run it 467/2=234 times for
each input sample. The sample rate in this
example is only 1 KHz, which implies that
our multiplier would have to run at:

1 KHz * 467/2 = 234 KHz

This is easily achievable in today’s FPGAs
and represents a minimal hardware
resource usage.

The multipliers in most low-cost FPGAs
are 18 x 18 as mentioned earlier. That

means to process larger than 18-bit data
or 18-bit coefficients or both, designers
will need to use four of these multipliers
to create a 36 x 36 multiplier.

Let’s assume a typical industry worst
case of 24-bit data words and 32-bit
coefficients. For a 467-tap filter, there must
be enough memory to buffer up 467 data
samples and to store 467/2 coefficients.
Ignoring some of the implementation
details of the FPGA RAM architecture,
this implies that a data RAM of 12 Kb and
a coefficient RAM of 8 Kb are needed.
Translating this into the M4K blocks of the
Cyclone II FPGAs would mean a total of
five M4K blocks.

SavFIRe implementation
Quickfilter Technologies has developed
a SavFIRe chip that is a dedicated FIR
filter, supporting up to 512 taps with
32-bit coefficients and anywhere from
12- to 24-bit data words. The QF1D512
supports sample rates from 1 Hz up to
500 KHz. A block diagram of the chip is
provided in Figure 3.

The main advantages that come from a
dedicated IC all stem from the ability to
design a chip specifically for the purpose
in mind and optimize all of the associ-
ated characteristics of the device. For
example, this device is 3 x 3 mm in size;
16 of these will fit in the same footprint

Number of Taps, N Number of
CPU Clocks

Max Sampling Rate (KHz)
(100% CPU loading)

32 310 25

50 410 19

100 730 11

Table 2

Compute

Power
Flexibility Size Power Cost

Time-to-
Market

Micro-
controller

 

DSP  

FPGA  

SavFIRe     

Table 3

Systems: DSP vs. FPGA – peaceful coexsistence

Military Embedded Systems
©2007 OpenSystems Publishing. Not for Distribution.

Fo
r S
ing
le P
rin
t O
nly

area of an FPGA configured for the same
function. Power and cost can also be fully
optimized for the function at hand.

The disadvantage of using an IC tailored
for a specific function like FIR filters is
that it is not very flexible for use in appli-
cations outside of FIR filtering. Another
requirement is that SavFIRe cannot be
used autonomously in a system. There
must be some sort of host controller to
configure the chip and run sample data
through it.

For comparison to the other implementa-
tion methods, let’s use the same 467-tap
FIR example from above. This filter can
be created with 32-bit coefficients and
use from 12- to 24-bit data samples with
the current architecture in SavFIRe. Also,
1 KHz is no problem since SavFIRe works
from 1 Hz to 500 KHz.

So what about design effort? There is also
a development package, QF1D512-DK,
comprising a development board and soft-
ware development tool. The software tool
enables a designer to design a filter by
simply specifying the filter parameters.
Once the parameters are entered, the
software generates all the filter coeffi-
cients and necessary register values to get
the chip up and running, making design
time absolutely minimal. It literally takes
minutes for an inexperienced designer to
design a high-precision filter.

Another advantage to using SavFIRe is
power consumption. The average power
consumption for SavFIRe running a
467-tap filter at 1 KHz is about 50 µW.
This is orders of magnitude lower than
any competing solution. The power scales
directly with the sample rate, giving an
equivalent power of 0.5 mW at 10 KHz
and 5 mW at 100 KHz.

Implementation comparison
We have outlined four popular choices for
implementing a high-precision digital FIR
filter. All of these implementations have
their bright spots as well as their down-
falls, which are summarized in Table 3.
Again, the SavFIRe choice appears to
come out ahead.

Ed Rocha is a
consultant and the
owner of Ed Rocha
Consulting. He
consulted on the
architecture and

development of Quickfilter’s software
development tools for both the QF1D512
and QF4A512. He can be contacted at
erocha@quickfilter.net.

Quickfilter Technologies
214-547-0460

www.quickfiltertech.com

512 Tap

Max

Coefficient

RAM

FIR Filter
Data Fmt /

Control SPI

Intfc

CTRL

Registers

VREG

DIN

DCLK

DSEL

RGND

VDD33GND

CS _N

SCLK

SDO

RST_NTST

SDI

VDD18

RVDD33

RVDD18

3.3v I/O1.8v Core

DDS /

Averager

M = 1-256

Data RAM

Clk Gen

(ring osc)
clk _sys

16

2

3

4

5

6

7

8

9

10 1112 1314

15

Figure 3

Military Embedded Systems
©2007 OpenSystems Publishing. Not for Distribution.

Fo
r S
ing
le P
rin
t O
nly

mailto:erocha@quickfilter.net
http://www.quickfiltertech.com

