
High-precision FIR filters are used in myriad medical, military, 
and high-volume consumer applications. However, given the 
choice of stand-alone Microcontroller Units (MCUs), DSPs, 
FPGAs, or dedicated Finite Impulse Response (FIR) ICs, only 
the latter balances cost, power, size, and precision performance.

FIR filters form the basis of wireless systems in medical devices, 
industrial control, consumer electronics, and cellular infrastructure. 
In fact, they are one of the most common types of digital filters. 
These linear time-invariant style filters rely solely on current and 
past input samples and not on past outputs, making the resultant 
signal directly proportional to the number of taps (summation 
series) and a coefficient set used to calculate the output.

FIR filters can be calculated relatively easily using several dif-
ferent IC implementations, including microcontrollers, general 
purpose DSP chips, FPGAs, and purpose-built dedicated FIR 
devices. While each type has advantages and disadvantages, in 
systems requiring the combination of high precision, low cost, 
reasonable size, and power, purpose-built FIRs plus low-cost 
MCUs represent the best of all worlds. Let’s examine each 
option in detail.

Implementation comparison
Several implementation choices are available to designers. Each has 
its benefits and risks (Table 1). The first implementation is that of 

a microcontroller with a built-in hardware multiplier and enough 
data RAM to store data samples to be used in the computation.  
The major benefits are that this is a small, low-power implemen-
tation. It is also highly integrated. The microcontroller not only 
implements the FIR filter, but can also function as the overall 
system controller. The disadvantage is that a microcontroller, 
even after adding a hardware multiplier on-chip, still has very 
limited computational abilities and is only a viable solution for 
relatively simple FIR filters at low sample rates. Also, adding 
resources to a microcontroller like a hardware multiplier and 
memory significantly increases the cost of the chip.

The second implementation is that of a DSP. The major benefit 
of using a DSP is that it provides a large amount of computation 
horsepower and a virtually infinite amount of flexibility in design 
and algorithm choices. The DSP can also handle medium to large 
FIR filters up to very high sample frequencies. The downside of 
using DSPs, though, is that they are large devices that burn a 
lot of power. They are also relatively expensive and possibly 
overkill in systems that run at lower sample frequencies.

The third choice is that of an FPGA. The major benefit of an 
FPGA is the ability to implement algorithms in hardware without 
losing versatility. FPGAs can support an almost infinite number 
of algorithmic choices and provide the highest performance of 
all. The downside of using FPGAs is that they are also large 
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FIR basis Pro Con

Microcontroller (MCU) SWaP, integration, CPU decision making 
Implements only simple FIR, limited computation, cost 

increases with complexity

Dedicated DSP
Flexibility, nearly limitless horsepower, implements large 

FIRs and high sample rates
Power hungry, expensive, often overkill in some 

systems

FPGA
H/W implementation yet still versatile,  

very flexible algorithms
Large and power hungry, requires skilled IC designers, 

and cost per chip is high

Purpose-built FIR chip  
(such as the SavFIRe)

Fast time-to-market, programming ease, low cost Fixed functionality, requires host controller

Table 1
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devices that burn more power than any of 
the other alternatives. They also require 
skilled engineers and considerable design 
time to implement. The cost per chip is 
the highest of all competing solutions for 
a single filter such as the one described 
earlier.

The final implementation choice is a 
Simple and Versatile FIR Engine or 
SavFIRe. The dedicated FIR chip is the 
easiest to program and represents the 
quickest time-to-market of all solutions.  
It is the least expensive of all the solu-
tions and is by far the smallest and most 
power-efficient method discussed. The 
downside of using this part is that it is a 
dedicated FIR filter and cannot be reused 
or reconfigured to be anything else. 
Using SavFIRe requires some sort of host 
controller to run the system. However, an 
MCU with filter data storage can cost as 
low as $1. The combination of an inex-
pensive, low-power microcontroller along 
with the SavFIRe chip represents the best 
total system solution in terms of power, 
size, time-to-market, and cost.

Example FIR filter for comparison
To make a reasonable comparison 
between the different platforms for 
implementing the FIR filter, it helps to 
have an example. This way we can not 
only compute the ability of each platform 
to perform the task, but also estimate 
comparisons between the platforms’ size, 
power, and cost.

The FIR filter we will design is a notched 
low-pass filter and has the specifications 
shown in Figure 1.

System sample frequency = 1 KHz»»
Notch center frequency = 60 Hz»»
Top notch BW = 50 Hz»»
Bottom notch BW = 38 Hz»»
Notch attenuation = 60 dB»»
Pass-band upper frequency = 250 Hz»»
Pass-band lower frequency = 260 Hz»»
Pass-band ripple = 0.1 dB»»
Stop-band attenuation = 60 dB»»

The approximate number of taps for this 
filter is 467.

Microcontroller implementation
A good example of a microcontroller that 
can handle a considerable FIR load is 
Texas Instruments’ MSP430F169. It has 

both a built-in MAC unit and multiple 
DMA channels to assist in moving data 
and coefficients to and from data memory. 
Another significant specification is its 2 
KB of memory. This is important because 
the microcontroller must have enough 

memory to buffer data samples equal to 
the number of taps. 

Figure 2 shows the data flow of the FIR 
filter. The steps needed to calculate each 
output of the FIR filter are as follows:

Figure 1
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Get input sample from ADC»»
Loop N-1 times: Move two input »»
samples from memory to MAC; 
move coefficient from memory to 
MAC; perform MAC operation
Retrieve output from MAC and store »»
to memory

Table 2 represents some benchmarks »»
for the MSP430F169. Using the  
data in the table, we can estimate  
the number of clock cycles needed  
to calculate a 467-tap filter. After 
some interpolation, we come up 
with about 3,200 clock cycles. This 
indicates a maximum sample rate of 
2,500 Hz. We are only sampling at 
1,000 Hz. If we add a bit of overhead 
to retrieve samples and deliver results 
to memory or perform any type of 
analysis on the samples, it is fair to 
assume that our filter will result in 
approximately a 50 percent loading 
on the CPU. Table 2 specifies  
the benchmarks of the MSP430F169.

The MSP430 family only has a 16 x 16  
multiplier in its MAC unit. This means 
that designers are limited to 16-bit 
data and 16-bit coefficients if they 
are to achieve the performance just 
mentioned. In many systems, both 
data and coefficients can be larger than  
16 bits, which could easily result in a per-
formance degradation of 10x or more. 

DSP implementation 
The steps involved in FIR calculations 
are very similar for a DSP compared to a 
microcontroller. Differences occur in the 
memory usage where the DSP treats the 
memory as a circular buffer with pointers 
that automatically update. Also, because of 
the high amount of parallelism and pipe-
lining in a DSP, most DSPs can execute 
the entire MAC operation including fetch-
ing and storing data in one clock cycle 
per MAC operation. There is a slight bit 
of overhead associated with the beginning 
and end of the computation loops, but this 
is negligible for a large number of taps.

Using a Texas Instruments lower-end, 
fixed-point DSP, the TMS320C55x, 
let’s look at our previous filter design. 
This DSP is capable of 160 MIPS  
with one 32 x 32 multiply each clock 

cycle. This equates to 160M/467 taps 
per sample = 342 KSps at full speed; this 
is more than adequate for our example 
application. 

FPGA implementation
The available hardware resources in any 
given FPGA vary widely depending on 
the FPGA vendor, part family, and the 
size of the device chosen. 

For the 467-tap FIR in our example, let’s 
use the smallest FPGA in the Cyclone II 
family from Altera. The EP2C5 has about  
4.6 K logic elements, 26 M4K blocks (4 Kb 
RAMs), and 13 embedded multipliers that 
are each 18 x 18 bits wide. To implement the  
467-tap filter in our example, there are 
many different architectural choices avail-
able using the resources in the FPGA.

The simplest architecture is to use a single 
multiplier and run it 467/2=234 times for 
each input sample. The sample rate in this 
example is only 1 KHz, which implies that 
our multiplier would have to run at:

1 KHz * 467/2 = 234 KHz

This is easily achievable in today’s FPGAs 
and represents a minimal hardware 
resource usage. 

The multipliers in most low-cost FPGAs 
are 18 x 18 as mentioned earlier. That 

means to process larger than 18-bit data 
or 18-bit coefficients or both, designers 
will need to use four of these multipliers 
to create a 36 x 36 multiplier.

Let’s assume a typical industry worst 
case of 24-bit data words and 32-bit  
coefficients. For a 467-tap filter, there must 
be enough memory to buffer up 467 data 
samples and to store 467/2 coefficients. 
Ignoring some of the implementation 
details of the FPGA RAM architecture, 
this implies that a data RAM of 12 Kb and 
a coefficient RAM of 8 Kb are needed. 
Translating this into the M4K blocks of the 
Cyclone II FPGAs would mean a total of  
five M4K blocks.

SavFIRe implementation
Quickfilter Technologies has developed 
a SavFIRe chip that is a dedicated FIR 
filter, supporting up to 512 taps with 
32-bit coefficients and anywhere from 
12- to 24-bit data words. The QF1D512 
supports sample rates from 1 Hz up to 
500 KHz. A block diagram of the chip is 
provided in Figure 3.

The main advantages that come from a 
dedicated IC all stem from the ability to 
design a chip specifically for the purpose 
in mind and optimize all of the associ-
ated characteristics of the device. For 
example, this device is 3 x 3 mm in size; 
16 of these will fit in the same footprint 

Number of Taps, N Number of  
CPU Clocks

Max Sampling Rate (KHz) 
(100% CPU loading)

32 310 25

50 410 19

100 730 11

Table 2

 
Compute 

Power
Flexibility Size Power Cost

Time-to-
Market

Micro-
controller

 

DSP  

FPGA  

SavFIRe     

Table 3
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area of an FPGA configured for the same 
function. Power and cost can also be fully 
optimized for the function at hand.

The disadvantage of using an IC tailored 
for a specific function like FIR filters is 
that it is not very flexible for use in appli-
cations outside of FIR filtering. Another 
requirement is that SavFIRe cannot be 
used autonomously in a system. There 
must be some sort of host controller to 
configure the chip and run sample data 
through it. 

For comparison to the other implementa-
tion methods, let’s use the same 467-tap 
FIR example from above. This filter can 
be created with 32-bit coefficients and 
use from 12- to 24-bit data samples with 
the current architecture in SavFIRe. Also,  
1 KHz is no problem since SavFIRe works 
from 1 Hz to 500 KHz. 

So what about design effort? There is also 
a development package, QF1D512-DK, 
comprising a development board and soft- 
ware development tool. The software tool 
enables a designer to design a filter by 
simply specifying the filter parameters. 
Once the parameters are entered, the 
software generates all the filter coeffi-
cients and necessary register values to get 
the chip up and running, making design 
time absolutely minimal. It literally takes 
minutes for an inexperienced designer to 
design a high-precision filter.

Another advantage to using SavFIRe is 
power consumption. The average power 
consumption for SavFIRe running a 
467-tap filter at 1 KHz is about 50 µW.  
This is orders of magnitude lower than 
any competing solution. The power scales 
directly with the sample rate, giving an 
equivalent power of 0.5 mW at 10 KHz 
and 5 mW at 100 KHz. 

Implementation comparison
We have outlined four popular choices for 
implementing a high-precision digital FIR 
filter. All of these implementations have 
their bright spots as well as their down-
falls, which are summarized in Table 3.  
Again, the SavFIRe choice appears to 
come out ahead.
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