
PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 1 / 28

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 2 / 28

Table of contents
PROGRAMMING LANGUAGES..3

ADVANTAGES OF HIGHER PROGRAMMING LANGUAGES....................................6
PREPROCESSOR.. 6

PREPROCESSOR DIRECTIVE # include... 7
PREPROCESSOR DIRECTIVE # define...7

THE BASICS OF C PROGRAMMING LANGUAGE..8
COMMENTS..10
DATA TYPES IN C LANGUAGE..10

VARIABLES... 10
Declaring Variables... 10
Pointers... 11
Changing individual bits.. 11
Declarations.. 11

CONSTANTS...12
INTEGER CONSTANTS.. 12
FLOATING POINT CONSTANTS.. 13
CHARACTER CONSTANTS (ASCII CHARACTERS)... 13
STRING CONSTANTS.. 13
ENUMERATED CONSTANTS... 13

OPERATORS, OPERATIONS AND EXPRESSIONS...14
ARITHMETIC OPERATORS.. 14
ASSIGNMENT OPERATORS.. 14
INCREMENT AND DECREMENT OPERATORS.. 15
RELATIONAL OPERATORS..15
LOGIC OPERATORS.. 15
BITWISE OPERATORS... 16
HOW TO USE OPERATORS?.. 16

DATA TYPE CONVERSION.. 17
CONDITIONAL OPERATORS...18

CONDITIONAL OPERATOR if-else... 18
Switch OPERATION.. 19

PROGRAM LOOP... 20
While LOOP... 20
For LOOP.. 21
Do-while LOOP.. 21

WRITING CODE IN ASSEMBLY LANGUAGE..22
ARRAYS.. 23

TWO-DIMENSIONAL ARRAY.. 24
POINTERS.. 25
FUNCTIONS..26

DECLARATION OF A NEW FUNCTION.. 28
FUNCTION LIBRARIES.. 28

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 3 / 28

PROGRAMMING LANGUAGES
The microcontroller executes the program loaded in its Flash memory. This is the so called executable code
comprised of seemingly meaningless sequence of zeros and ones. It is organized in 12-, 14- or 16-bit wide
words, depending on the microcontroller’s architecture. Every word is considered by the CPU as a command
being executed during the operation of the microcontroller. For practical reasons, as it is much easier for us
to deal with hexadecimal number system, the executable code is often represented as a sequence of
hexadecimal numbers called a Hex code. It used to be written by the programmer. All instructions that the
microcontroller can recognize are together called the Instruction set. As for PIC microcontrollers the
programming words of which are comprised of 14 bits, the instruction set has 35 different instructions in total.

As the process of writing executable code was endlessly tiring, the first ‘higher’ programming language
called assembly language was created. The truth is that it made the process of programming more
complicated, but on the other hand the process of writing program stopped being a nightmare. Instructions in
assembly language are represented in the form of meaningful abbreviations, and the process of their
compiling into executable code is left over to a special program on a PC called compiler. The main
advantage of this programming language is its simplicity, i.e. each program instruction corresponds to one
memory location in the microcontroller. It enables a complete control of what is going on within the chip, thus
making this language commonly used today.

However, programmers have always needed a programming language close to the language being used in
everyday life. As a result, the higher programming languages have been created. One of them is C. The
main advantage of these languages is simplicity of program writing. It is no longer possible to know exactly

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 4 / 28

how each command executes, but it is no longer of interest anyway. In case it is, a sequence written in
assembly language can always be inserted in the program, thus enabling it.

Similar to assembly language, a specialized program in a PC called compiler is in charge of compiling
program into machine language. Unlike assembly compilers, these create an executable code which is not
always the shortest possible.

Figures above give a rough illustration of what is going on during the process of compiling the program from
higher to lower programming language.

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 5 / 28

Here is an example of a simple program written in C language:

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 6 / 28

ADVANTAGES OF HIGHER PROGRAMMING LANGUAGES

If you have ever written a program for the microcontroller in assembly language, then you probably know that
the RISC architecture lacks instructions. For example, there is no appropriate instruction for multiplying two
numbers, but there is also no reason to be worried about it. Every problem has a solution and this one
makes no exception thanks to mathematics which enable us to perform complex operations by breaking
them into a number of simple ones. Concretely, multiplication can be easily substituted by successive
addition (a x b = a + a + a + ... + a). And here we are, just at the beginning of a very long story... Don’t worry
as far as the higher programming languages, such as C, are concerned because somebody has already
solved this and many other similar problems for you. It will do to write a*b.

PREPROCESSOR

A preprocessor is an integral part of the C compiler and its function is to recognize and execute preprocessor
instructions. These are special instructions which do not belong to C language, but are a part of software
package coming with the compiler. Each preprocessor command starts with ‘#’. Prior to program compilation,
C compiler activates the preprocessor which goes through the program in search for these signs. If any
encountered, the preprocessor will simply replace them by another text which, depending on the type of
command, can be a file contents or just a short sequence of characters. Then, the process of compilation
may start. The preprocessor instructions can be anywhere in the source program, and refer only to the part
of the program following their appearance up to the end of the program.

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 7 / 28

PREPROCESSOR DIRECTIVE # include

Many programs often repeat the same set of commands for several times. In order to speed up the process
of writing a program, these commands and declarations are usually grouped in particular files that can easily
be included in the program using this directive. To be more precise, the #include command imports text from
another document, no matter what it is (commands, comments etc.), into the program.

PREPROCESSOR DIRECTIVE # define

The #define command provides macro expansion by replacing identifiers in the program by their values.

#define symbol sequence_of_characters

Example:

...
#define PI 3.14
...

As the use of any language is not limited to books and magazines only, this programming language is not
closely related to any special type of computers, processors or operating systems. C language is actually a
general-purpose language. However, exactly this fact can cause some problems during operation as C
language slightly varies depending on its application (this could be compared to different dialects of one
language).

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 8 / 28

THE BASICS OF C PROGRAMMING LANGUAGE
The main idea of writing program in C language is to break a bigger problem down into several smaller
pieces. Suppose it is necessary to write a program for the microcontroller that is going to measure
temperature and show results on an LCD display. The process of measuring is performed by a sensor that
converts temperature into voltage. The microcontroller uses its A/D converter to convert this voltage
(analogue value) to a number (digital value) which is then sent to the LCD display via several conductors.
Accordingly, the program is divided in four parts that you have to go through as per the following order:

1. Activate and set built-in A/D converter;
2. Measure analogue value;
3. Calculate temperature;
4. Send data in the proper form to LCD display.

As seen, the higher programming languages such as C enable you to solve this problem easily by writing
four functions to be executed cyclically and over and over again.

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 9 / 28

The figure below illustrates the structure of a simple program, pointing out the parts it consists of.

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 10 / 28

COMMENTS

Comments are part of the program used to clarify the operation of the program or provide more information
about it. Comments are ignored and not compiled into executable code by the compiler. Simply put, the
compiler can recognize special characters used to designate where comments start and terminate and
completely ignores the text inbetween during compilation. There are two types of such characters. One
designates long comments extending several program lines (/* */), while the other designates short
comments taking up a single line (//). Even though comments cannot affect the program execution, they are
as important as any other part of the program, and here is why... A written program can always be improved,
modified, upgraded, simplified...It is almost always done. Without comments, trying to understand even the
simplest programs is waste of time.

DATA TYPES IN C LANGUAGE

There are several types of data that can be used in C programming language. A table below shows the
range of values which these data can have when used in their basic form.

VARIABLES

Any number changing its value during program operation is called a variable. Simply put, if the program adds
two numbers (number1 and number2), it is necessary to have a value to represent what we in everyday life
call the sum. In this case number1, number2 and sum are variables.

Declaring Variables

• Variable name can include any of the alphabetical characters A-Z (a-z), the digits 0-9 and the
underscore character '_'. The compiler is case sensitive and differentiates between capital and small
letters. Function and variable names usually contain lower case characters, while constant names
contain uppercase characters.

• Variable names must not start with a digit.
• Some of the names cannot be used as variable names as already being used by the compiler itself.

Such names are called the key words.

Type Size (bits) Arithmetic Type

bit 1 unsigned integer

char 8 signed or unsigned integer

unsigned char 8 unsigned integer

short 16 signed integer

unsigned short 16 unsigned integer

int 16 signed integer

unsigned int 16 unsigned integer

short long 24 signed integer

unsigned short long 24 unsigned integer

long 32 signed integer

unsigned long 32 unsigned integer

float 24 real

double 24 or 32 real

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 11 / 28

Pointers

A pointer is a special type of variable holding the address of character variables. In other words, the pointer
‘points to’ another variable. It is declared as follows:

type_of_variable *pointer_name;

In order to assign the address of a variable to a pointer, it is necessary to use the '=' character and write
variable name preceded by the '&' character. In the following example, the pointer ‘multiplex’ is declared and
assigned the address of the first out of eight LED displays:

unsigned int *multiplex; // Declare name and type of pointer multiplex
multiplex = &display1; // Pointer multiplex is assigned the address of
 // variable display1

To change the value of the pointed variable, it is sufficient to write the '*' character in front of its pointer and
assign it a new value.

*multiplex = 6; // Variable display1 is assigned the number 6

Similarly, in order to read the value of the pointed variable, it is sufficient to write:

temp = *multiplex; // The value of variable display1 is copied to temp

Changing individual bits

There are a few ways to change only one bit of a variable. The simplest one is to specify the register name,
bit's position or a name and desired state:

#define RELAY RA0

RB3 = 0; // Clear the bit 3 of PORTB
...
RELAY = 1; // Set the bit named RELAY

Declarations

Every variable must be declared prior to being used for the first time in the program. Since variables are
stored in RAM memory, it is necessary to reserve space for them (one, two or more bytes). You know what
type of data you write or expect as a result of an operation, while the compiler does not know that. Don’t
forget, the program deals with variables to which you assigned the names gate, sum, minimum etc. The
compiler recognizes them as registers of RAM memory. Variable types are usually assigned at the beginning
of the program.

unsigned int gate1; // Declare name and type of variable gate1

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 12 / 28

Apart from the name and type, variables are usually assigned initial values at the beginning of the program
as well. It is not a ‘must-do’ step, but a matter of good habits. In this case, it looks as follows:

unsigned int gate1; // Declare type and name of the variable
signed int start, sum; // Declare type and name of other two variables
gate1 = 20; // Assign variable gate1 an initial value

The process of assigning initial value and declaring type can be performed in one step:

unsigned int gate1=20; // Declare type, name and value of variable

If there are several variables being assigned the same initial value, the process can be even simplified:

unsigned int gate1=gate2=gate3=20;
signed int start=sm=0;

• Type of variable is not accompanied by the ‘+’ or ‘-’ sign by default. For example, char can be written
instead of signed char (variable is a signed byte). In this case the compiler considers variable
positive values.

• If you, by any chance, forget to declare variable type, the compiler will automatically consider it a
signed integer. It means that such a variable will occupy two memory bytes and have values in the
range of -32768 to +32767.

CONSTANTS

A constant is a number or a character having fixed value that cannot be changed during program execution.
Unlike variables, constants are stored in the flash program memory of the microcontroller for the purpose of
saving valuable space of RAM. The compiler recognizes them by their name and prefix const.

INTEGER CONSTANTS

Integer constants can be decimal, hexadecimal, octal or binary. In the following example, the constant
MINIMUM will be considered a signed integer and stored within two bytes of Flash memory (16 bits):

Radix Format Example

binary 0bnumber or 0Bnumber 0b10011010

octal 0number 0763

decimal number 129

hexadecimal 0xnumber or 0Xnumber 0x2F

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 13 / 28

const int MINIMUM = -100; // Declare constant MINIMUM

FLOATING POINT CONSTANTS

Floating point constants consist of an integer part, a dot, a fractional part and an optional e or E followed by
a signed integer exponent.

const float T_MAX = 32.60; // Declare temperature T_MAX
const double T_MAX = 3.260E1; // Declare the same constant T_MAX

In both examples, a constant named T_MAX is declared to have the fractional value 32.60. It enables the
program to compare the measured temperature to the meaningful constant instead of numbers representing
it.

CHARACTER CONSTANTS (ASCII CHARACTERS)

A character constant is a character enclosed within single quotation marks. In the following example, a
constant named I_CLASS is declared as A character, while a constant named II_CLASS is declared as B
character.

const char I_CLASS = 'A'; // Declare constant I_CLASS
const char II_CLASS = 'B'; // Declare constant II_CLASS

When defined this way, the execution of the commands sending the I_CLASS and II_CLASS constants to an
LCD display, will cause the characters A and B to be displayed, respectively.

STRING CONSTANTS

A constant consisting of a sequence of characters is called a string. String constants are enclosed within
double quotation marks.

const char Message_1[] = "Press the START button"; // Message 1 for LCD
const char Message_2[] = "Press the RIGHT button"; // Message 2 for LCD
const char Message_3[] = "Press the LEFT button"; // Message 3 for LCD

In this example, sending the Message_1 constant to an LCD display will cause the message 'press the
START button' to be displayed.

ENUMERATED CONSTANTS

Enumerated constants are a special type of integer constants which make a program more comprehensive
and easier to follow by assigning elements the ordinal numbers. In the following example, the first element in
curly brackets is automatically assigned the value 0, the second one is assigned the value 1, the third one
the value 2 etc.

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 14 / 28

enum MOTORS {UP, DOWN, LEFT, RIGHT}; // Declare constant MOTORS

On every occurrence of the words 'LEFT', 'RIGHT', 'UP' and 'DOWN' in the program, the compiler will
replace them by the appropriate numbers (0-3).

OPERATORS, OPERATIONS AND EXPRESSIONS

An operator is a symbol denoting particular arithmetic, logic or some other operation. There are more than 40
operations available in C language, but at most 10-15 of them are used in practice. Every operation is
performed upon one or more operands which can be variables or constants. Besides, every operation
features priority execution and associativity as well.

ARITHMETIC OPERATORS

Arithmetic operators are used in arithmetic operations and always return positive results. Unlike unary
operations being performed upon one operand, binary operations are performed upon two operands. In other
words, two numbers are required to execute a binary operation. For example: a+b or a/b.

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Reminder

ASSIGNMENT OPERATORS

There are two types of assignments in C language:

• Simple operators assign values to variables using the common '=' character. For example: a = 8
• Compound assignments are specific to C language and consist of two characters as shown in the

table. An expression can be written in a different way as well, but this one provides more efficient
machine code.

Operator
Example

Expression Equivalent

+= a += 8 a = a + 8

-= a -= 8 a = a - 8

*= a *= 8 a = a * 8

/= a /= 8 a = a / 8

%= a %= 8 a = a % 8

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 15 / 28

INCREMENT AND DECREMENT OPERATORS

Increment and decrement by 1 operations are denoted by '++' and '--'. These characters can either precede
or follow a variable. In the first case (++x), the x variable will be first incremented by 1, then used in
expression. Otherwise, the variable will be first used in expression, then incremented by 1. The same applies
to the decrement operation.

Operator Example Description

++
++a

Variable "a" is incremented by 1
a++

--
--b

Variable "b" is decremented by 1
b--

RELATIONAL OPERATORS

Relational operators are used in comparisons for the purpose of comparing two variables which can be
integers (int) or floating point numbers (float). If an expression evaluates to true, a 1 is returned. Otherwise, a
0 is returned. This is used in expressions such as ‘if the expression is true then...’

Operator Meaning Example Truth condition

> is greater than b > a if b is greater than a

>= is greater than or equal to a >= 5 If a is greater than or equal to 5

< is less than a < b if a Is less than b

<= is less than or equal to a <= b if a Is less than or equal to b

== is equal to a == 6 if a Is equal to 6

!= is not equal to a != b if a Is not equal to b

LOGIC OPERATORS

There are three types of logic operations in C language: logic AND, logic OR and negation (NOT). For the
sake of clearness, logic states in tables below are represented as logic zero (0=false) and logic one (1=true).
Logic operators return true (logic 1) if the expression evaluates to non-zero, and false (logic 0) if the
expression evaluates to zero. This is very important because logic operations are commonly used upon
expressions, not upon single variables (numbers) in the program. Therefore, logic operations refer to the
truth of the whole expression.

For example: 1 && 0 is the same as (true expression) && (false expression)

The result is 0, i.e. - False in either case.

Operator Logical AND

&&

Operand1 Operand2 Result

0 0 0

0 1 0

1 0 0

1 1 1

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 16 / 28

Operator Logical OR

||

Operand1 Operand2 Result

0 0 0

0 1 1

1 0 1

1 1 1

Operator Logical NOT

!

Operand1 Result

0 1

1 0

BITWISE OPERATORS

Unlike logic operations being performed upon variables, the bitwise operations are performed upon single
bits within operands. Bitwise operators are used to modify the bits of a variable. They are listed in the table
below:

Operand Meaning Example Result

~ Bitwise complement a = ~b b = 5 a = -5

<< Shift left a = b << 2 b = 11110011 a = 11001100

>> Shift right a = b >> 3 b = 11110011 a = 00011110

& Bitwise AND c = a & b a = 11100011
b = 11001100

c = 11000000

| Bitwise OR c = a | b
a = 11100011
b = 11001100

c = 11101111

^ Bitwise EXOR c = a ^ b a = 11100011
b = 11001100

c = 00101111

HOW TO USE OPERATORS?

Except for assignment operators, two operators must not be written next to each other.

x*%12; // such expression will generate an error

Operators are grouped together using parentheses similar to arithmetic expressions. The expressions
enclosed within parentheses are calculated first. If necessary, multiple (nested) parentheses can be used.
Each operator has its priority and associativity as shown in the table.

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 17 / 28

Priority Operators Associativity

High () [] -> . from left to right

! ~ ++ -- +(unary) -(unary) *Pointer &Pointer from right to left

* / % from left to right

+ - from left to right

< > from left to right

< <= > >= from left to right

== != from left to right

& from left to right

^ from left to right

| from left to right

&& from left to right

|| from right to left

?: from right to left

Low = += -= *= /= /= &= ^= |= <= >= from left to right

DATA TYPE CONVERSION

The main data types are put in hierarchical order as follows:

If two operands of different type are used in an arithmetic operation, the lower priority operand type is
automatically converted into the higher priority operand type. In expressions free from assignment operation,
the result is obtained in the following way:

• If the highest priority operand is of type double, then types of all other operands in the expression as
well as the result are automatically converted into type double.

• If the highest priority operand is of type long, then types of all other operands in the expression as
well as the result are automatically converted into type long.

• If the operands are of long or char type, then types of all other operands in the expression as well as
the result are automatically converted into type int.

Auto conversion is also performed in assignment operations. The result of the expression right from the
assignment operator is always converted into the type of variable left from the operator. If the result is of
higher-ranked type, it is truncated or rounded in order to match the type of variable. When converting real
data into integer, numbers following the decimal point are always truncated.

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 18 / 28

int x; // Variable x is declared as integer int
x = 3; // Variable x is assigned value 3
x += 3.14; // Number PI (3.14) is added to variable x by performing
 // the assignment operation

/* The result of addition is 6 instead of expected 6.14. To obtain the
expected result without truncating the numbers following the decimal
point, common addition should be performed (x+3.14), . */

CONDITIONAL OPERATORS

A condition is a common ingredient of the program. When met, it is necessary to perform one out of several
operations. In other words 'If the condition is met (...), do (...). Otherwise, if the condition is not met, do (...)' .
Conditional operands if-else and switch are used in conditional operations.

CONDITIONAL OPERATOR if-else

The conditional operator can appear in two forms - as if and if-else operator.
Here is an example of the if operator:

if(expression) operation;

If the result of expression enclosed within brackets is not 0 (true), the operation is performed and the
program proceeds with execution. If the result of expression is 0 (false), the operation is not performed and
the program immediately proceeds with execution.

As mentioned, the other form combines both if and else operators:

if(expression) operation1; else operation2;

If the result of expression is not 0 (true), operation1 is performed, otherwise operation2 is performed. After
performing either operation, the program proceeds with execution.

The syntax of the if-else statement is:

if(expression)
 operation1;
else
 operation2;

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 19 / 28

If either operation1 or operation2 is compound, a group of operations these consist of must be enclosed
within curly brackets. For example:

if(expression) {
 operation1;
 operation2;
}
else {
 operation3;
 operation4;
}

The if-else operator can be written using the conditional operator '?:' as in example below:

(expression1)? expression2 : expression3

If expression1 is not 0 (true), the result of the whole expression will be equal to the result obtained from
expression2. Otherwise, if expression1 is 0 (false), the result of the whole expression will be equal to the
result obtained from expression3.

maximum = (a > b)? a : b // Variable maximum is assigned the value of
 // larger variable (a or b)

Switch OPERATION

Unlike the if-else statement which makes selection between two options in the program, the switch operator
enables you to choose between several operations. The syntax of the switch statement is:

switch (selector) { // Selector is of char or int type
 case constant1:
 operation1; // Group of operators are executed if
 ... // selector and constant1 are equal
 break;
 case constant2:
 operation2; // Group of operators are executed if
 ... // selector and constant2 are equal
 break;
 ...
 default:
 expected_operation;// Group of operators are executed if no
 ... // constant is equal to selector
 break;
}

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 20 / 28

The switch operation is executed in the following way: selector is executed first and compared to constant1.
If match is found, statements in that case block are executed until the break keyword or the end of the
switch operation is encountered. If no match is found, selector is further compared to constant2 and if match
is found, statements in that case block are executed until the break keyword is encountered and so on. If the
selector doesn’t match any constant, operations following the default operator are to be executed.

PROGRAM LOOP

It is often necessary to repeat a certain operation for a couple of times in the program. A set of commands
being repeated is called the program loop. How many times it will be executed, i.e. how long the program will
stay in the loop, depends on the conditions to leave the loop.

While LOOP

The while loop looks as follows:

while(expression){
 commands;
 ...
}

The commands are executed repeatedly (the program remains in the loop) until the expression becomes
false. If the expression is false on entry to the loop, then the loop will not be executed and the program will
proceed from the end of the while loop.

A special type of program loop is the endless loop. It is formed if the condition remains unchanged within the
loop. The execution is simple in this case as the result in brackets is always true (1=1), which means that the
program remans in the same loop:

while(1){
 ... // Expressions enclosed within curly brackets will be
 ... // endlessly executed (endless loop).
}

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 21 / 28

For LOOP

The for loop looks as follows:

for(initial_expression; condition_expression; change_expression) {
 operation;
 ...
}

The execution of such program sequence is similar to the while loop, except that in this case the process of
setting initial value (initialization) is performed within declaration. The initial_expression sets the initial
variable of the loop, which is further compared to the condition_expression before entering the loop.
Operations within the loop are executed repeatedly and after each iteration the value of expression is
changed. The iteration continues until the condition_expression becomes false.

for(k=1; k<5; k++){ // Increase variable k 5 times (from 1 to 5) and
 operation; // repeat expression operation every time
 ...
}

Operation is to be performed five times. After that, it will be validated by checking that the expression k<5 is
false (after 5 iterations k=5) and the program will exit the for loop.

Do-while LOOP

The do-while loop looks as follows:

do {
 operation;
 ...
} while (check_condition);

In this case, the operation is executed at least once regardless of whether the condition is true or false as the
expression check_condition is executed at the end of the loop. If the result is not 0 (true), the procedure is
repeated. In the following example, the program remains in do-while loop until the variable a reaches 10 (a
million iterations).

a = 0; // Set initial value

do {

 a = a+1; // Operation in progress

} while (a <= 10); // Check condition

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 22 / 28

WRITING CODE IN ASSEMBLY LANGUAGE

PIC MCU instructions may also be directly embedded “in-line”
into C code using the directives #asm, #endasm or the
statement asm();.
The #asm and #endasm directives are used to start and end a
block of assembly instructions which are to be embedded into
the assembly output of the code generator. The #asm block is
not syntactically part of the C program, and thus it does not
obey normal C flow-of-control rules. This means that you
should not use this form of in-line assembly inside C constructs
like if(), while() and for() statements. However this is the
easiest means of adding multiple assembly instructions.
The asm() statement is used to, typically, embed a single
assembler instruction. This form looks and behaves like a C statement. Only one assembly instruction may
be encapsulated within each asm() statement. You can specify more than one assembly instruction inside
one asm() statement by separating the instructions with a \n character, (e.g. asm("movlw 55\nmovwf _x");)
although code will be more readable if you one place one instruction in each statement and use multiple
statements.

You may use the asm(" ") form of in-line assembly at any point in the C source code as it will correctly
interact with all C flow-of-control structures.

The following example shows both methods used:

unsigned int var;

void main(void){

 var = 1;

#asm // like this...
 BCF 0,3
 BANKSEL(_var)
 RLF (_var)&07fh
 RLF (_var+1)&07fh
#endasm
 // do it again the other way...
 asm("BCF 0,3");
 asm("BANKSEL _fvar");
 asm("RLF (_var)&07fh");
 asm("RLF (_var+1)&07fh");
}

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 23 / 28

ARRAYS

A group of variables of the same type is called an array. Elements of an array are called components, while
their type is called the main type. An array is declared by specifying its name, type and the number of
elements it will comprise:

component_type array_name [number_of_components];

Such a complicated definition for something so simple, isn’t it? An array can be thought of as a shorter or
longer list of variables of the same type where each of these is assigned an ordinal number (numbering
always starts at zero). Such an array is often called a vector. The figure below shows an array named shelf
which consists of 100 elements.

Array "shelf" Elements of array Contents of element

7 shelf[0] 7

23 shelf[1] 23

34 shelf[2] 34

0 shelf[3] 0

0 shelf[4] 0

12 shelf[5] 12

9 shelf[6] 9

...

...

23 shelf [99] 23

In this case, the contents of a variable (an element of the array) represents a number of products the shelf
contains. Elements are accessed by indexing, i.e. by specifying their ordinal number (index):

shelf[4] = 12; // 12 items is ‘placed’ on shelf [4]
temp = shelf [1]; // Variable shelf[1] is copied to
 // variable temp

Elements can be assigned contents during array declaration. In the following example, the array named
calendar is declared and each element is assigned specific number of days:

unsigned char calendar [12] = {31,28,31,30,31,30,31,31,30,31,30,31};

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 24 / 28

TWO-DIMENSIONAL ARRAY

Apart from one-dimensional arrays which could be thought of as a list, there are also multidimensional arrays
in C language. In a few following sentences we are going to describe only two-dimensional arrays called
matrices which can be thought of as tables. A twodimensional array is declared by specifying data type of the
array, the array name and the size of each dimension. Look at the example below:

component_type array_name [number_of_rows] [number_of_columns];

number_of_rows and number_of_columns represent the number of rows and columns of a table,
respectively.

int Table [3][4]; // Table is defined to have 3 rows and 4 columns

This array can be represented in the form of a table.

table[0][0] table[0][1] table[0][2] table[0][3]

table[1][0] table[1][1] table[1][2] table[1][3]

table[2][0] table[2][1] table[2][2] table[2][3]

Similar to vectors, the elements of a matrix can be assigned values during array declaration. In the following
example, the elements of the two-dimensional array Table are assigned values. As seen, this array has two
rows and three columns:

int Table[2][3] = {{3,42,1}, {7,7,19}};

The matrix above can also be represented in the form of a table the elements of which have the following
values:

3 42 1

7 7 19

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 25 / 28

POINTERS

A pointer is a special type of variable holding the address of character variables. In other words, the pointer
‘points to’ another variable. It is declared as follows:

This is how a function looks like:

type_of_variable *pointer_name;

In order to assign the address of a variable to a pointer, it is necessary to use the '=' character and write
variable name preceded by the '&' character. In the following example, the pointer ‘multiplex’ is declared and
assigned the address of the first out of eight LED displays:

unsigned int *multiplex; // Declare name and type of pointer multiple
multiplex = &display1; // Pointer multiplex is assigned the address of

 // variable display1

To change the value of the pointed variable, it is sufficient to write the '*' character in front of its pointer and
assign it a new value.

*multiplex = 6; // Variable display1 is assigned the number

Similarly, in order to read the value of the pointed variable, it is sufficient to write:

temp = *multiplex; // The value of variable display1 is copied to temp

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 26 / 28

FUNCTIONS

Every program written in C language consists of larger or smaller number of functions. The main idea is to
divide a program into several parts using these functions in order to solve the actual problem easier.
Besides, functions enable us to use the skills and knowledge of other programmers. For example, if it is
necessary to send a string to an LCD display, it is much easier to use already written part of the program
than to start over.

Functions consist of commands specifying what should be done upon variables. They can be compared to
subroutines. As a rule, it is much better to have a program consisting of large number of simple functions
than of a few large functions. A function body usually consists of several commands being executed by the
order they are specified.

Every function must be properly declared so as to be properly interpreted during the process of compilation.
Declaration contains the following elements:

• Function name
• Function body
• List of parameters
• Declaration of parameters
• Type of function result

This is how a function looks like:

type_of_result function_name (type argument1, type argument2,...) {
 Command;
 Command;
 ...
}

Example:

/* Function computes the result of division of the numerator number by
 the denominator denom.
 The function returns a real. */

real div(int number, int denom);

Note that a function does not need to have parameters, but must have brackets to be used for entering them.
Otherwise, the compiler would misinterpret the function.

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 27 / 28

If the function, after being executed, returns no result to the main program or to the function it is called by,
the program proceeds with execution after encountering a closing curly bracket. Such functions are used
when it is necessary to change the state of the microcontroller output pins, during data transfer via serial
communication, when writing data on an LCD display etc. The compiler recognizes those functions by the
type of their result specified to be void.

void function_name (type argument1, type argument2,...) {
 Command;
}

Example:

void interrupt() {
 cnt++; // Interrupt causes cnt to be incremented by 1
 T0IF = 0; // Reset Timer0 Flag
}

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

PIC Microcontrollers – The basics of C programming language

References: http://www.mikroe.com and the Hi-Tech C Manual

Page 28 / 28

The function can be assigned an arbitrary name. The only exception is the name main which has a special
purpose. Namely, the program always starts execution with this function. It means that every program written
in C language must contain one function named 'main' which does not have to be placed at the beginning of
the program.

If it is necessary that called function returns results after being executed, the return command, which can be
followed by any expression, is used:

type_of_result function_name (type argument1, type argument2,...) {
 Command;
 ...
 return expression;
}

If the function contains the return command without being followed by expression, the function stops its
execution when encounters this command and the program proceeds with execution from the first command
following a closing curly bracket.

DECLARATION OF A NEW FUNCTION

Apart from the functions that C language 'automatically' recognizes, there are also completely new functions
being often used in programs. Each 'non-standard' function should be declared at the beginning of the
program. The function declaration is called a prototype and looks as follows:

type_of_result function_name (type1, type2, ..) ;

FUNCTION LIBRARIES

Names of all functions being used in C language are stored in the file called header. These functions are,
depending on their purpose, sorted in smaller files called libraries. Prior to using any of them in the program,
it is necessary to specify the appropriate header file using the #include command at the beginning of the
program. If the compiler encounters an unknown function during program execution, it will first look for its
declaration in the specified libraries.

EPAI-Fribourg – Hervé Page - support_c.odt - ver.1.1

http://www.mikroe.com/

	PROGRAMMING LANGUAGES
	ADVANTAGES OF HIGHER PROGRAMMING LANGUAGES
	PREPROCESSOR
	PREPROCESSOR DIRECTIVE # include
	PREPROCESSOR DIRECTIVE # define

	THE BASICS OF C PROGRAMMING LANGUAGE
	COMMENTS
	DATA TYPES IN C LANGUAGE
	VARIABLES
	Declaring Variables
	Pointers
	Changing individual bits
	Declarations

	CONSTANTS
	INTEGER CONSTANTS
	FLOATING POINT CONSTANTS
	CHARACTER CONSTANTS (ASCII CHARACTERS)
	STRING CONSTANTS
	ENUMERATED CONSTANTS

	OPERATORS, OPERATIONS AND EXPRESSIONS
	ARITHMETIC OPERATORS
	ASSIGNMENT OPERATORS
	INCREMENT AND DECREMENT OPERATORS
	RELATIONAL OPERATORS
	LOGIC OPERATORS
	BITWISE OPERATORS
	HOW TO USE OPERATORS?

	DATA TYPE CONVERSION
	CONDITIONAL OPERATORS
	CONDITIONAL OPERATOR if-else
	Switch OPERATION

	PROGRAM LOOP
	While LOOP
	For LOOP
	Do-while LOOP

	WRITING CODE IN ASSEMBLY LANGUAGE
	ARRAYS
	TWO-DIMENSIONAL ARRAY

	POINTERS
	FUNCTIONS
	DECLARATION OF A NEW FUNCTION
	FUNCTION LIBRARIES

